10,459 research outputs found

    Accommodating the difference in students’ prior knowledge of cell growth kinetics

    Get PDF
    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal level of knowledge on cell growth kinetics they need to comprehend the content knowledge of the subsequent lectures and pass the exam. The module was organised to offer the subject matter in a differentiated manner, so that students could follow different learning paths. Two student groups were investigated, one consisting of students who had received their prior education abroad and one of students that had not. Exam scores, questionnaires, and logged user data of the two student groups were analysed to discover whether the digital module had the intended effect. The results indicate that students did indeed follow different learning paths. Also, the differences in exam scores between the two student groups that was present before the introduction of the digital module was found to have decreased afterwards. In general, students appreciated the use of the material regardless of their prior education. We therefore conclude that the use of adaptive digital learning material is a possible way to solve the problem of differences in prior education of students entering a course

    Intelligent and adaptive tutoring for active learning and training environments

    Get PDF
    Active learning facilitated through interactive and adaptive learning environments differs substantially from traditional instructor-oriented, classroom-based teaching. We present a Web-based e-learning environment that integrates knowledge learning and skills training. How these tools are used most effectively is still an open question. We propose knowledge-level interaction and adaptive feedback and guidance as central features. We discuss these features and evaluate the effectiveness of this Web-based environment, focusing on different aspects of learning behaviour and tool usage. Motivation, acceptance of the approach, learning organisation and actual tool usage are aspects of behaviour that require different evaluation techniques to be used

    Optimising ITS behaviour with Bayesian networks and decision theory

    Get PDF
    We propose and demonstrate a methodology for building tractable normative intelligent tutoring systems (ITSs). A normative ITS uses a Bayesian network for long-term student modelling and decision theory to select the next tutorial action. Because normative theories are a general framework for rational behaviour, they can be used to both define and apply learning theories in a rational, and therefore optimal, way. This contrasts to the more traditional approach of using an ad-hoc scheme to implement the learning theory. A key step of the methodology is the induction and the continual adaptation of the Bayesian network student model from student performance data, a step that is distinct from other recent Bayesian net approaches in which the network structure and probabilities are either chosen beforehand by an expert, or by efficiency considerations. The methodology is demonstrated by a description and evaluation of CAPIT, a normative constraint-based tutor for English capitalisation and punctuation. Our evaluation results show that a class using the full normative version of CAPIT learned the domain rules at a faster rate than the class that used a non-normative version of the same system

    Personalised correction, feedback, and guidance in an automated tutoring system for skills training

    Get PDF
    In addition to knowledge, in various domains skills are equally important. Active learning and training are effective forms of education. We present an automated skills training system for a database programming environment that promotes procedural knowledge acquisition and skills training. The system provides support features such as correction of solutions, feedback and personalised guidance, similar to interactions with a human tutor. Specifically, we address synchronous feedback and guidance based on personalised assessment. Each of these features is automated and includes a level of personalisation and adaptation. At the core of the system is a pattern-based error classification and correction component that analyses student input

    Template-driven teacher modelling approach : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Information Science at Massey University, Palmerston North

    Get PDF
    This thesis describes the Template-driven Teacher Modeling Approach, the initial implementation of the template server and the formative evaluation on the prototype. The initiative of Template-driven teacher modeling is to integrate the template server and intelligent teacher models in Web-based education systems for course authoring. There are a number of key components in the proposed system: user interface, template server and content repository. The Template-Driven Teacher Modeling (TDTM) architecture supports the course authoring by providing higher degree of control over the generation of presentation. The collection of accumulated templates in the template repository for a teacher or a group of teachers are selected as the inputs for the inference mechanism in teacher's model to calculate the best representation of the teaching strategy, and then predict teacher intention when he or she interacts with the system. Moreover, the presentation templates are kept to support the re-use of the on-line content at the level of individual screens with the help of Template Server

    Affective learning: improving engagement and enhancing learning with affect-aware feedback

    Get PDF
    This paper describes the design and ecologically valid evaluation of a learner model that lies at the heart of an intelligent learning environment called iTalk2Learn. A core objective of the learner model is to adapt formative feedback based on students’ affective states. Types of adaptation include what type of formative feedback should be provided and how it should be presented. Two Bayesian networks trained with data gathered in a series of Wizard-of-Oz studies are used for the adaptation process. This paper reports results from a quasi-experimental evaluation, in authentic classroom settings, which compared a version of iTalk2Learn that adapted feedback based on students’ affective states as they were talking aloud with the system (the affect condition) with one that provided feedback based only on the students’ performance (the non-affect condition). Our results suggest that affect-aware support contributes to reducing boredom and off-task behavior, and may have an effect on learning. We discuss the internal and ecological validity of the study, in light of pedagogical considerations that informed the design of the two conditions. Overall, the results of the study have implications both for the design of educational technology and for classroom approaches to teaching, because they highlight the important role that affect-aware modelling plays in the adaptive delivery of formative feedback to support learning
    • 

    corecore