83,993 research outputs found

    Feature Distilled Tracking

    Get PDF
    Feature extraction and representation is one of the most important components for fast, accurate, and robust visual tracking. Very deep convolutional neural networks (CNNs) provide effective tools for feature extraction with good generalization ability. However, extracting features using very deep CNN models needs high performance hardware due to its large computation complexity, which prohibits its extensions in real-time applications. To alleviate this problem, we aim at obtaining small and fast-to-execute shallow models based on model compression for visual tracking. Specifically, we propose a small feature distilled network (FDN) for tracking by imitating the intermediate representations of a much deeper network. The FDN extracts rich visual features with higher speed than the original deeper network. To further speed-up, we introduce a shift-and-stitch method to reduce the arithmetic operations, while preserving the spatial resolution of the distilled feature maps unchanged. Finally, a scale adaptive discriminative correlation filter is learned on the distilled feature for visual tracking to handle scale variation of the target. Comprehensive experimental results on object tracking benchmark datasets show that the proposed approach achieves 5x speed-up with competitive performance to the state-of-the-art deep trackers

    Learning Target-oriented Dual Attention for Robust RGB-T Tracking

    Full text link
    RGB-Thermal object tracking attempt to locate target object using complementary visual and thermal infrared data. Existing RGB-T trackers fuse different modalities by robust feature representation learning or adaptive modal weighting. However, how to integrate dual attention mechanism for visual tracking is still a subject that has not been studied yet. In this paper, we propose two visual attention mechanisms for robust RGB-T object tracking. Specifically, the local attention is implemented by exploiting the common visual attention of RGB and thermal data to train deep classifiers. We also introduce the global attention, which is a multi-modal target-driven attention estimation network. It can provide global proposals for the classifier together with local proposals extracted from previous tracking result. Extensive experiments on two RGB-T benchmark datasets validated the effectiveness of our proposed algorithm.Comment: Accepted by IEEE ICIP 201

    Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update

    Get PDF
    Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches
    • …
    corecore