4,141 research outputs found

    Checkpointing as a Service in Heterogeneous Cloud Environments

    Get PDF
    A non-invasive, cloud-agnostic approach is demonstrated for extending existing cloud platforms to include checkpoint-restart capability. Most cloud platforms currently rely on each application to provide its own fault tolerance. A uniform mechanism within the cloud itself serves two purposes: (a) direct support for long-running jobs, which would otherwise require a custom fault-tolerant mechanism for each application; and (b) the administrative capability to manage an over-subscribed cloud by temporarily swapping out jobs when higher priority jobs arrive. An advantage of this uniform approach is that it also supports parallel and distributed computations, over both TCP and InfiniBand, thus allowing traditional HPC applications to take advantage of an existing cloud infrastructure. Additionally, an integrated health-monitoring mechanism detects when long-running jobs either fail or incur exceptionally low performance, perhaps due to resource starvation, and proactively suspends the job. The cloud-agnostic feature is demonstrated by applying the implementation to two very different cloud platforms: Snooze and OpenStack. The use of a cloud-agnostic architecture also enables, for the first time, migration of applications from one cloud platform to another.Comment: 20 pages, 11 figures, appears in CCGrid, 201

    Adaptive and Online Health Monitoring System for Autonomous Aircraft

    Get PDF
    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour based on the progression of its sensory values produced by the aircraft's modules, components and/or subsystems. The AHMS indicates erroneous flight behaviour when a deviation to this health information is produced. This will be useful for a UAS because the pilot is taken out of the control loop and is unaware of how the environment and/or faults are affecting the behaviour of the aircraft. The autonomous pilot can use this health information to help produce safer and securer flight behaviour or fault tolerance to the aircraft. This allows the aircraft to fly safely in whatever the environmental conditions. This health information can also be used to help increase the endurance of the aircraft. This paper describes how the AHMS performs its capabilities

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Checkpoint and run-time adaptation with pluggable parallelisation

    Get PDF
    Enabling applications for computational Grids requires new approaches to develop applications that can effectively cope with resource volatility. Applications must be resilient to resource faults, adapting the behaviour to available resources. This paper describes an approach to application-level adaptation that efficiently supports application-level checkpointing. The key of this work is the concept of pluggable parallelisation, which localises parallelisation issues into multiple modules that can be (un)plugged to match resource availability. This paper shows how pluggable parallelisation can be extended to effectively support checkpointing and run-time adaptation. We present the developed pluggable mechanism that helps the programmer to include checkpointing in the base (sequential). Based on these mechanisms and on previous work on pluggable parallelisation, our approach is able to automatically add support for checkpointing in parallel execution environments. Moreover, applications can adapt from a sequential execution to a multi-cluster configuration. Adaptation can be performed by checkpointing the application and restarting on a different mode or can be performed during run-time. Pluggable parallelisation intrinsically promotes the separation of software functionality from fault-tolerance and adaptation issues facilitating their analysis and evolution. The work presented in this paper reinforces this idea by showing the feasibility of the approach and performance benefits that can be achieved.(undefined

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    Passivation-based control reconfiguration with virtual actuators

    Get PDF
    This paper presents a novel approach for designing reconfiguration blocks for fault hiding of linear systems subject to actuator faults based on the passivity/dissipativity theory. For this purpose, the concept of passivation block is used to design virtual actuators (VAs) which guarantee that the faulty plant achieves the desired passivity indices and consequently the stability. Linear matrix inequalities (LMI)-based conditions are provided for designing the proposed VAs for ensuring the stability recovery for linear systems. Finally, a numerical example is used for assessing the proposed approach.Peer ReviewedPostprint (published version

    Energy adaptive buildings:From sensor data to being aware of users

    Get PDF
    • …
    corecore