71 research outputs found

    Adaptive sliding mode control for uncertain wheel mobile robot

    Get PDF
    In this paper a simple adaptive sliding mode controller is proposed for tracking control of the wheel mobile robot (WMR) systems. The WMR are complicated systems with kinematic and dynamic model so the error dynamic model is built to simplify the mathematical model. The sliding mode control then is designed for this error model with the adaptive law to compensate for the mismatched. The proposed control scheme in this work contains only one control loop so it is simple in both implementation and mathematical calculation. Moreover, the requirement of upper bounds of disturbance that is popular in the sliding mode control is cancelled, so it is convenient for real world applications. Finally, the effectiveness of the presented algorithm is verified through mathematical proof and simulations. The comparison with the existing work is also executed to evaluate the correction of the introduced adaptive sliding mode controller. Thoroughly, the settling time, the peak value, the integral square error of the proposed control scheme reduced about 50% in comparison with the compared disturbance observer based sliding mode control

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    Analysis and Control of Mobile Robots in Various Environmental Conditions

    Get PDF
    The world sees new inventions each day, made to make the lifestyle of humans more easy and luxurious. In such global scenario, the robots have proved themselves to be an invention of great importance. The robots are being used in almost each and every field of the human world. Continuous studies are being done on them to make them simpler and easier to work with. All fields are being unraveled to make them work better in the human world without human interference. We focus on the navigation field of these mobile robots. The aim of this thesis is to find the controller that produces the most optimal path for the robot to reach its destination without colliding or damaging itself or the environment. The techniques like Fuzzy logic, Type 2 fuzzy logic, Neural networks and Artificial bee colony have been discussed and experimented to find the best controller that could find the most optimal path for the robot to reach its goal position. Simulation and Experiments have been done alike to find out the optimal path for the robot

    Planning And Control Of Swarm Motion As Continua

    Get PDF
    In this thesis, new algorithms for formation control of multi agent systems (MAS) based on continuum mechanics principles will be investigated. For this purpose agents of the MAS are treated as particles in a continuum, evolving in an n-D space, whose desired configuration is required to satisfy an admissible deformation function. Considered is a specific class of mappings that is called homogenous where the Jacobian of the mapping is only a function of time and is not spatially varying. The primary objectives of this thesis are to develop the necessary theory and its validation via simulation on a mobile-agent based swarm test bed that includes two primary tasks: 1) homogenous transformation of MAS and 2) deployment of a random distribution of agents on to a desired configuration. Developed will be a framework based on homogenous transformations for the evolution of a MAS in an n-D space (n=1, 2, and 3), under two scenarios: 1) no inter-agent communication (predefined motion plan); and 2) local inter-agent communication. Additionally, homogenous transformations based on communication protocols will be used to deploy an arbitrary distribution of a MAS on to a desired curve. Homogenous transformation with no communication: A homogenous transformation of a MAS, evolving in an space, under zero inter agent communication is first considered. Here the homogenous mapping, is characterized by an n x n Jacobian matrix ( ) and an n x 1 rigid body displacement vector ( ), that are based on positions of n+1 agents of the MAS, called leader agents. The designed Jacobian ( ) and rigid body displacement vector ( ) are passed onto rest of the agents of the MAS, called followers, who will then use that information to update their positions under a pre- iv defined motion plan. Consequently, the motion of MAS will evolve as a homogenous transformation of the initial configuration without explicit communication among agents. Homogenous Transformation under Local Communication: We develop a framework for homogenous transformation of MAS, evolving in , under a local inter agent communication topology. Here we assume that some agents are the leaders, that are transformed homogenously in an n-D space. In addition, every follower agent of the MAS communicates with some local agents to update its position, in order to grasp the homogenous mapping that is prescribed by the leader agents. We show that some distance ratios that are assigned based on initial formation, if preserved, lead to asymptotic convergence of the initial formation to a final formation under a homogenous mapping. Deployment of a Random Distribution on a Desired Manifold: Deployment of agents of a MAS, moving in a plane, on to a desired curve, is a task that is considered as an application of the proposed approach. In particular, a 2-D MAS evolution problem is considered as two 1-D MAS evolution problems, where x or y coordinates of the position of all agents are modeled as points confined to move on a straight line. Then, for every coordinate of MAS evolution, bulk motion is controlled by two agents considered leaders that move independently, with rest of the follower agents motions evolving through each follower agent communicating with two adjacent agents

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    Robust Model Predictive Control for Linear Parameter Varying Systems along with Exploration of its Application in Medical Mobile Robots

    Get PDF
    This thesis seeks to develop a robust model predictive controller (MPC) for Linear Parameter Varying (LPV) systems. LPV models based on input-output display are employed. We aim to improve robust MPC methods for LPV systems with an input-output display. This improvement will be examined from two perspectives. First, the system must be stable in conditions of uncertainty (in signal scheduling or due to disturbance) and perform well in both tracking and regulation problems. Secondly, the proposed method should be practical, i.e., it should have a reasonable computational load and not be conservative. Firstly, an interpolation approach is utilized to minimize the conservativeness of the MPC. The controller is calculated as a linear combination of a set of offline predefined control laws. The coefficients of these offline controllers are derived from a real-time optimization problem. The control gains are determined to ensure stability and increase the terminal set. Secondly, in order to test the system's robustness to external disturbances, a free control move was added to the control law. Also, a Recurrent Neural Network (RNN) algorithm is applied for online optimization, showing that this optimization method has better speed and accuracy than traditional algorithms. The proposed controller was compared with two methods (robust MPC and MPC with LPV model based on input-output) in reference tracking and disturbance rejection scenarios. It was shown that the proposed method works well in both parts. However, two other methods could not deal with the disturbance. Thirdly, a support vector machine was introduced to identify the input-output LPV model to estimate the output. The estimated model was compared with the actual nonlinear system outputs, and the identification was shown to be effective. As a consequence, the controller can accurately follow the reference. Finally, an interpolation-based MPC with free control moves is implemented for a wheeled mobile robot in a hospital setting, where an RNN solves the online optimization problem. The controller was compared with a robust MPC and MPC-LPV in reference tracking, disturbance rejection, online computational load, and region of attraction. The results indicate that our proposed method surpasses and can navigate quickly and reliably while avoiding obstacles

    Development of Path Following and Cooperative Motion Control Algorithms for Autonomous Underwater Vehicles

    Get PDF
    Research on autonomous underwater vehicle (AUV) is motivating and challenging owing to their specific applications such as defence, mine counter measure, pipeline inspections, risky missions e.g. oceanographic observations, bathymetric surveys, ocean floor analysis, military uses, and recovery of lost man-made objects. Motion control of AUVs is concerned with navigation, path following and co-operative motion control problems. A number of control complexities are encountered in AUV motion control such as nonlinearities in mass matrix, hydrodynamic terms and ocean currents. These pose challenges to develop efficient control algorithms such that the accurate path following task and effective group co-ordination can be achieved in face of parametric uncertainties and disturbances and communication constraints in acoustic medium. This thesis first proposes development of a number of path following control laws and new co-operative motion control algorithms for achieving successful motion control objectives. These algorithms are potential function based proportional derivative path following control laws, adaptive trajectory based formation control, formation control of multiple AUVs steering towards a safety region, mathematical potential function based flocking control and fuzzy potential function based flocking control. Development of a path following control algorithm aims at generating appropriate control law, such that an AUV tracks a predefined desired path. In this thesis first path following control laws are developed for an underactuated (the number of inputs are lesser than the degrees of freedom) AUV. A potential function based proportional derivative (PFPD) control law is derived to govern the motion of the AUV in an obstacle-rich environment (environment populated by obstacles). For obstacle avoidance, a mathematical potential function is exploited, which provides a repulsive force between the AUV and the solid obstacles intersecting the desired path. Simulations were carried out considering a special type of AUV i.e. Omni Directional Intelligent Navigator (ODIN) to study the efficacy of the developed PFPD controller. For achieving more accuracy in the path following performance, a new controller (potential function based augmented proportional derivative, PFAPD) has been designed by the mass matrix augmentation with PFPD control law. Simulations were made and the results obtained with PFAPD controller are compared with that of PFPD controlle

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics
    • тАж
    corecore