22 research outputs found

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    Model predictive path integral control: Theoretical foundations and applications to autonomous driving

    Get PDF
    This thesis presents a new approach for stochastic model predictive (optimal) control: model predictive path integral control, which is based on massive parallel sampling of control trajectories. We first show the theoretical foundations of model predictive path integral control, which are based on a combination of path integral control theory and an information theoretic interpretation of stochastic optimal control. We then apply the method to high speed autonomous driving on a 1/5 scale vehicle and analyze the performance and robustness of the method. Extensive experimental results are used to identify and solve key problems relating to robustness of the approach, which leads to a robust stochastic model predictive control algorithm capable of consistently pushing the limits of performance on the 1/5 scale vehicle.Ph.D

    Advanced human inspired walking strategies for humanoid robots

    Get PDF
    Cette thèse traite du problème de la locomotion des robots humanoïdes dans le contexte du projet européen KoroiBot. En s'inspirant de l'être humain, l'objectif de ce projet est l'amélioration des capacités des robots humanoïdes à se mouvoir de façon dynamique et polyvalente. Le coeur de l'approche scientifique repose sur l'utilisation du controle optimal, à la fois pour l'identification des couts optimisés par l'être humain et pour leur mise en oeuvre sur les robots des partenaires roboticiens. Cette thèse s'illustre donc par une collaboration à la fois avec des mathématiciens du contrôle et des spécialistes de la modélisation des primitives motrices. Les contributions majeures de cette thèse reposent donc sur la conception de nouveaux algorithmes temps-réel de contrôle pour la locomotion des robots humanoïdes avec nos collégues de l'université d'Heidelberg et leur intégration sur le robot HRP-2. Deux contrôleurs seront présentés, le premier permettant la locomotion multi-contacts avec une connaissance a priori des futures positions des contacts. Le deuxième étant une extension d'un travail réalisé sur de la marche sur sol plat améliorant les performances et ajoutant des fonctionnalitées au précédent algorithme. En collaborant avec des spécialistes du mouvement humain nous avons implementé un contrôleur innovant permettant de suivre des trajectoires cycliques du centre de masse. Nous présenterons aussi un contrôleur corps-complet utilisant, pour le haut du corps, des primitives de mouvements extraites du mouvement humain et pour le bas du corps, un générateur de marche. Les résultats de cette thèse ont été intégrés dans la suite logicielle "Stack-of-Tasks" du LAAS-CNRS.This thesis covers the topic of humanoid robot locomotion in the frame of the European project KoroiBot. The goal of this project is to enhance the ability of humanoid robots to walk in a dynamic and versatile fashion as humans do. Research and innovation studies in KoroiBot rely on optimal control methods both for the identification of cost functions used by human being and for their implementations on robots owned by roboticist partners. Hence, this thesis includes fruitful collaborations with both control mathematicians and experts in motion primitive modeling. The main contributions of this PhD thesis lies in the design of new real time controllers for humanoid robot locomotion with our partners from the University of Heidelberg and their integration on the HRP-2 robot. Two controllers will be shown, one allowing multi-contact locomotion with a prior knowledge of the future contacts. And the second is an extension of a previous work improving performance and providing additional functionalities. In a collaboration with experts in human motion we designed an innovating controller for tracking cyclic trajectories of the center of mass. We also show a whole body controller using upper body movement primitives extracted from human behavior and lower body movement computed by a walking pattern generator. The results of this thesis have been integrated into the LAAS-CNRS "Stack-of-Tasks" software suit

    Experience-driven optimal motion synthesis in complex and shared environments

    Get PDF
    Optimal loco-manipulation planning and control for high-dimensional systems based on general, non-linear optimisation allows for the specification of versatile motion subject to complex constraints. However, complex, non-linear system and environment dynamics, switching contacts, and collision avoidance in cluttered environments introduce non-convexity and discontinuity in the optimisation space. This renders finding optimal solutions in complex and changing environments an open and challenging problem in robotics. Global optimisation methods can take a prohibitively long time to converge. Slow convergence makes them unsuitable for live deployment and online re-planning of motion policies in response to changes in the task or environment. Local optimisation techniques, in contrast, converge fast within the basin of attraction of a minimum but may not converge at all without a good initial guess as they can easily get stuck in local minima. Local methods are, therefore, a suitable choice provided we can supply a good initial guess. If a similarity between problems can be found and exploited, a memory of optimal solutions can be computed and compressed efficiently in an offline computation process. During runtime, we can query this memory to bootstrap motion synthesis by providing a good initial seed to the local optimisation solver. In order to realise such a system, we need to address several connected problems and questions: First, the formulation of the optimisation problem (and its parametrisation to allow solutions to transfer to new scenarios), and related, the type and granularity of user input, along with a strategy for recovery and feedback in case of unexpected changes or failure. Second, a sampling strategy during the database/memory generation that explores the parameter space efficiently without resorting to exhaustive measures---i.e., to balance storage size/memory with online runtime to adapt/repair the initial guess. Third, the question of how to represent the problem and environment to parametrise, compute, store, retrieve, and exploit the memory efficiently during pre-computation and runtime. One strategy to make the problem computationally tractable is to decompose planning into a series of sequential sub-problems, e.g., contact-before-motion approaches which sequentially perform goal state planning, contact planning, motion planning, and encoding. Here, subsequent stages operate within the null-space of the constraints of the prior problem, such as the contact mode or sequence. This doctoral thesis follows this line of work. It investigates general optimisation-based formulations for motion synthesis along with a strategy for exploration, encoding, and exploitation of a versatile memory-of-motion for providing an initial guess to optimisation solvers. In particular, we focus on manipulation in complex environments with high-dimensional robot systems such as humanoids and mobile manipulators. The first part of this thesis focuses on collision-free motion generation to reliably generate motions. We present a general, collision-free inverse kinematics method using a combination of gradient-based local optimisation with random/evolution strategy restarting to achieve high success rates and avoid local minima. We use formulations for discrete collision avoidance and introduce a novel, computationally fast continuous collision avoidance objective based on conservative advancement and harmonic potential fields. Using this, we can synthesise continuous-time collision-free motion plans in the presence of moving obstacles. It further enables to discretise trajectories with fewer waypoints, which in turn considerably reduces the optimisation problem complexity, and thus, time to solve. The second part focuses on problem representations and exploration. We first introduce an efficient solution encoding for trajectory library-based approaches. This representation, paired with an accompanying exploration strategy for offline pre-computation, permits the application of inexpensive distance metrics during runtime. We demonstrate how our method efficiently re-uses trajectory samples, increases planning success rates, and reduces planning time while being highly memory-efficient. We subsequently present a method to explore the topological features of the solution space using tools from computational homology. This enables us to cluster solutions according to their inherent structure which increases the success of warm-starting for problems with discontinuities and multi-modality. The third part focuses on real-world deployment in laboratory and field experiments as well as incorporating user input. We present a framework for robust shared autonomy with a focus on continuous scene monitoring for assured safety. This framework further supports interactive adjustment of autonomy levels from fully teleoperated to automatic execution of stored behaviour sequences. Finally, we present sensing and control for the integration and embodiment of the presented methodology in high-dimensional real-world platforms used in laboratory experiments and real-world deployment. We validate our presented methods using hardware experiments on a variety of robot platforms demonstrating generalisation to other robots and environments

    Bridging Vision and Dynamic Legged Locomotion

    Get PDF
    Legged robots have demonstrated remarkable advances regarding robustness and versatility in the past decades. The questions that need to be addressed in this field are increasingly focusing on reasoning about the environment and autonomy rather than locomotion only. To answer some of these questions visual information is essential. If a robot has information about the terrain it can plan and take preventive actions against potential risks. However, building a model of the terrain is often computationally costly, mainly because of the dense nature of visual data. On top of the mapping problem, robots need feasible body trajectories and contact sequences to traverse the terrain safely, which may also require heavy computations. This computational cost has limited the use of visual feedback to contexts that guarantee (quasi-) static stability, or resort to planning schemes where contact sequences and body trajectories are computed before starting to execute motions. In this thesis we propose a set of algorithms that reduces the gap between visual processing and dynamic locomotion. We use machine learning to speed up visual data processing and model predictive control to achieve locomotion robustness. In particular, we devise a novel foothold adaptation strategy that uses a map of the terrain built from on-board vision sensors. This map is sent to a foothold classifier based on a convolutional neural network that allows the robot to adjust the landing position of the feet in a fast and continuous fashion. We then use the convolutional neural network-based classifier to provide safe future contact sequences to a model predictive controller that optimizes target ground reaction forces in order to track a desired center of mass trajectory. We perform simulations and experiments on the hydraulic quadruped robots HyQ and HyQReal. For all experiments the contact sequences, the foothold adaptations, the control inputs and the map are computed and processed entirely on-board. The various tests show that the robot is able to leverage the visual terrain information to handle complex scenarios in a safe, robust and reliable manner

    From walking to running: robust and 3D humanoid gait generation via MPC

    Get PDF
    Humanoid robots are platforms that can succeed in tasks conceived for humans. From locomotion in unstructured environments, to driving cars, or working in industrial plants, these robots have a potential that is yet to be disclosed in systematic every-day-life applications. Such a perspective, however, is opposed by the need of solving complex engineering problems under the hardware and software point of view. In this thesis, we focus on the software side of the problem, and in particular on locomotion control. The operativity of a legged humanoid is subordinate to its capability of realizing a reliable locomotion. In many settings, perturbations may undermine the balance and make the robot fall. Moreover, complex and dynamic motions might be required by the context, as for instance it could be needed to start running or climbing stairs to achieve a certain location in the shortest time. We present gait generation schemes based on Model Predictive Control (MPC) that tackle both the problem of robustness and tridimensional dynamic motions. The proposed control schemes adopt the typical paradigm of centroidal MPC for reference motion generation, enforcing dynamic balance through the Zero Moment Point condition, plus a whole-body controller that maps the generated trajectories to joint commands. Each of the described predictive controllers also feature a so-called stability constraint, preventing the generation of diverging Center of Mass trajectories with respect to the Zero Moment Point. Robustness is addressed by modeling the humanoid as a Linear Inverted Pendulum and devising two types of strategies. For persistent perturbations, a way to use a disturbance observer and a technique for constraint tightening (to ensure robust constraint satisfaction) are presented. In the case of impulsive pushes instead, techniques for footstep and timing adaptation are introduced. The underlying approach is to interpret robustness as a MPC feasibility problem, thus aiming at ensuring the existence of a solution for the constrained optimization problem to be solved at each iteration in spite of the perturbations. This perspective allows to devise simple solutions to complex problems, favoring a reliable real-time implementation. For the tridimensional locomotion, on the other hand, the humanoid is modeled as a Variable Height Inverted Pendulum. Based on it, a two stage MPC is introduced with particular emphasis on the implementation of the stability constraint. The overall result is a gait generation scheme that allows the robot to overcome relatively complex environments constituted by a non-flat terrain, with also the capability of realizing running gaits. The proposed methods are validated in different settings: from conceptual simulations in Matlab to validations in the DART dynamic environment, up to experimental tests on the NAO and the OP3 platforms

    Advances in Automated Driving Systems

    Get PDF
    Electrification, automation of vehicle control, digitalization and new mobility are the mega-trends in automotive engineering, and they are strongly connected. While many demonstrations for highly automated vehicles have been made worldwide, many challenges remain in bringing automated vehicles to the market for private and commercial use. The main challenges are as follows: reliable machine perception; accepted standards for vehicle-type approval and homologation; verification and validation of the functional safety, especially at SAE level 3+ systems; legal and ethical implications; acceptance of vehicle automation by occupants and society; interaction between automated and human-controlled vehicles in mixed traffic; human–machine interaction and usability; manipulation, misuse and cyber-security; the system costs of hard- and software and development efforts. This Special Issue was prepared in the years 2021 and 2022 and includes 15 papers with original research related to recent advances in the aforementioned challenges. The topics of this Special Issue cover: Machine perception for SAE L3+ driving automation; Trajectory planning and decision-making in complex traffic situations; X-by-Wire system components; Verification and validation of SAE L3+ systems; Misuse, manipulation and cybersecurity; Human–machine interactions, driver monitoring and driver-intention recognition; Road infrastructure measures for the introduction of SAE L3+ systems; Solutions for interactions between human- and machine-controlled vehicles in mixed traffic

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation

    Energy Planning

    Get PDF
    The world needs an accelerated energy transition to meet sustainable development goals. Energy planning has a critical role in providing the information that can guide decision-makers, and energy planning methods continue to evolve rapidly. This Special Issue provides new insights for long-term energy planning, drawing on the Clean Energy Ministerial Long Term Energy Planning Scenarios initiative and the IRENA LTES network
    corecore