147 research outputs found

    Denoising strategies for general finite frames

    Get PDF
    Overcomplete representations such as wavelets and windowed Fourier expansions have become mainstays of modern statistical data analysis. In the present work, in the context of general finite frames, we derive an oracle expression for the mean quadratic risk of a linear diagonal de-noising procedure which immediately yields the optimal linear diagonal estimator. Moreover, we obtain an expression for an unbiased estimator of the risk of any smooth shrinkage rule. This last result motivates a set of practical estimation procedures for general finite frames that can be viewed as the generalization of the classical procedures for orthonormal bases. A simulation study verifies the effectiveness of the proposed procedures with respect to the classical ones and confirms that the correlations induced by frame structure should be explicitly treated to yield an improvement in estimation precision

    On detecting harmonic oscillations

    Full text link
    In this paper, we focus on the following testing problem: assume that we are given observations of a real-valued signal along the grid 0,1,,N10,1,\ldots,N-1, corrupted by white Gaussian noise. We want to distinguish between two hypotheses: (a) the signal is a nuisance - a linear combination of dnd_n harmonic oscillations of known frequencies, and (b) signal is the sum of a nuisance and a linear combination of a given number dsd_s of harmonic oscillations with unknown frequencies, and such that the distance (measured in the uniform norm on the grid) between the signal and the set of nuisances is at least ρ>0\rho>0. We propose a computationally efficient test for distinguishing between (a) and (b) and show that its "resolution" (the smallest value of ρ\rho for which (a) and (b) are distinguished with a given confidence 1α1-\alpha) is O(ln(N/α)/N)\mathrm{O}(\sqrt{\ln(N/\alpha)/N}), with the hidden factor depending solely on dnd_n and dsd_s and independent of the frequencies in question. We show that this resolution, up to a factor which is polynomial in dn,dsd_n,d_s and logarithmic in NN, is the best possible under circumstances. We further extend the outlined results to the case of nuisances and signals close to linear combinations of harmonic oscillations, and provide illustrative numerical results.Comment: Published at http://dx.doi.org/10.3150/14-BEJ600 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Sparse Recovery via Differential Inclusions

    Full text link
    In this paper, we recover sparse signals from their noisy linear measurements by solving nonlinear differential inclusions, which is based on the notion of inverse scale space (ISS) developed in applied mathematics. Our goal here is to bring this idea to address a challenging problem in statistics, \emph{i.e.} finding the oracle estimator which is unbiased and sign-consistent using dynamics. We call our dynamics \emph{Bregman ISS} and \emph{Linearized Bregman ISS}. A well-known shortcoming of LASSO and any convex regularization approaches lies in the bias of estimators. However, we show that under proper conditions, there exists a bias-free and sign-consistent point on the solution paths of such dynamics, which corresponds to a signal that is the unbiased estimate of the true signal and whose entries have the same signs as those of the true signs, \emph{i.e.} the oracle estimator. Therefore, their solution paths are regularization paths better than the LASSO regularization path, since the points on the latter path are biased when sign-consistency is reached. We also show how to efficiently compute their solution paths in both continuous and discretized settings: the full solution paths can be exactly computed piece by piece, and a discretization leads to \emph{Linearized Bregman iteration}, which is a simple iterative thresholding rule and easy to parallelize. Theoretical guarantees such as sign-consistency and minimax optimal l2l_2-error bounds are established in both continuous and discrete settings for specific points on the paths. Early-stopping rules for identifying these points are given. The key treatment relies on the development of differential inequalities for differential inclusions and their discretizations, which extends the previous results and leads to exponentially fast recovering of sparse signals before selecting wrong ones.Comment: In Applied and Computational Harmonic Analysis, 201

    The Sampling Rate-Distortion Tradeoff for Sparsity Pattern Recovery in Compressed Sensing

    Full text link
    Recovery of the sparsity pattern (or support) of an unknown sparse vector from a limited number of noisy linear measurements is an important problem in compressed sensing. In the high-dimensional setting, it is known that recovery with a vanishing fraction of errors is impossible if the measurement rate and the per-sample signal-to-noise ratio (SNR) are finite constants, independent of the vector length. In this paper, it is shown that recovery with an arbitrarily small but constant fraction of errors is, however, possible, and that in some cases computationally simple estimators are near-optimal. Bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector for several different recovery algorithms. The tightness of the bounds, in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing information-theoretic necessary bounds. Near optimality is shown for a wide variety of practically motivated signal models

    Wavelet methods in statistics: Some recent developments and their applications

    Full text link
    The development of wavelet theory has in recent years spawned applications in signal processing, in fast algorithms for integral transforms, and in image and function representation methods. This last application has stimulated interest in wavelet applications to statistics and to the analysis of experimental data, with many successes in the efficient analysis, processing, and compression of noisy signals and images. This is a selective review article that attempts to synthesize some recent work on ``nonlinear'' wavelet methods in nonparametric curve estimation and their role on a variety of applications. After a short introduction to wavelet theory, we discuss in detail several wavelet shrinkage and wavelet thresholding estimators, scattered in the literature and developed, under more or less standard settings, for density estimation from i.i.d. observations or to denoise data modeled as observations of a signal with additive noise. Most of these methods are fitted into the general concept of regularization with appropriately chosen penalty functions. A narrow range of applications in major areas of statistics is also discussed such as partial linear regression models and functional index models. The usefulness of all these methods are illustrated by means of simulations and practical examples.Comment: Published in at http://dx.doi.org/10.1214/07-SS014 the Statistics Surveys (http://www.i-journals.org/ss/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Approximate Sparsity Pattern Recovery: Information-Theoretic Lower Bounds

    Full text link
    Recovery of the sparsity pattern (or support) of an unknown sparse vector from a small number of noisy linear measurements is an important problem in compressed sensing. In this paper, the high-dimensional setting is considered. It is shown that if the measurement rate and per-sample signal-to-noise ratio (SNR) are finite constants independent of the length of the vector, then the optimal sparsity pattern estimate will have a constant fraction of errors. Lower bounds on the measurement rate needed to attain a desired fraction of errors are given in terms of the SNR and various key parameters of the unknown vector. The tightness of the bounds in a scaling sense, as a function of the SNR and the fraction of errors, is established by comparison with existing achievable bounds. Near optimality is shown for a wide variety of practically motivated signal models
    corecore