264 research outputs found

    An Artificial Neural Network Based Learning Method for Mobile Robot Localization

    Get PDF

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    An improved data classification framework based on fractional particle swarm optimization

    Get PDF
    Particle Swarm Optimization (PSO) is a population based stochastic optimization technique which consist of particles that move collectively in iterations to search for the most optimum solutions. However, conventional PSO is prone to lack of convergence and even stagnation in complex high dimensional-search problems with multiple local optima. Therefore, this research proposed an improved Mutually-Optimized Fractional PSO (MOFPSO) algorithm based on fractional derivatives and small step lengths to ensure convergence to global optima by supplying a fine balance between exploration and exploitation. The proposed algorithm is tested and verified for optimization performance comparison on ten benchmark functions against six existing established algorithms in terms of Mean of Error and Standard Deviation values. The proposed MOFPSO algorithm demonstrated lowest Mean of Error values during the optimization on all benchmark functions through all 30 runs (Ackley = 0.2, Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01, Rastrigin = 2.5E-03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-03, Step = 0). Furthermore, the proposed MOFPSO algorithm is hybridized with Back-Propagation (BP), Elman Recurrent Neural Networks (RNN) and Levenberg-Marquardt (LM) Artificial Neural Networks (ANNs) to propose an enhanced data classification framework, especially for data classification applications. The proposed classification framework is then evaluated for classification accuracy, computational time and Mean Squared Error on five benchmark datasets against seven existing techniques. It can be concluded from the simulation results that the proposed MOFPSO-ERNN classification algorithm demonstrated good classification performance in terms of classification accuracy (Breast Cancer = 99.01%, EEG = 99.99%, PIMA Indian Diabetes = 99.37%, Iris = 99.6%, Thyroid = 99.88%) as compared to the existing hybrid classification techniques. Hence, the proposed technique can be employed to improve the overall classification accuracy and reduce the computational time in data classification applications

    An integrated multi-objectives optimization approach on modelling pavement maintenance strategies for pavement sustainability

    Get PDF
    Addressing the multi-dimensional challenges to promote pavement sustainability requires the development of an optimization approach by simultaneously taking into account future pavement conditions for pavement maintenance with the capability to search and determine optimal pavement maintenance strategies. Thus, this research presents an integrated approach based on the Markov chain and Particle swarm optimization algorithm which aims to consider the predicted pavement condition and optimize the pavement maintenance strategies during operation when applied in the maintenance management of a road pavement section. A case study is conducted for testing the capability of the proposed integrated approach based on two maintenance perspectives. For case 1, maintenance activities mainly occur in TM20, TM31, and TM41, with the maximum maintenance mileage reaching 88.49 miles, 50.89 miles, and 20.91 miles, respectively. For case 2, the largest annual maintenance cost in the first year is $15.16 million with four types of maintenance activities. Thereafter, the maintenance activities are performed at TM10, TM31, and TM41, respectively. The results obtained, compared with the linear program, show the integrated approach is effective and reliable for determining the maintenance strategy that can be employed to promote pavement sustainability
    • …
    corecore