1,425 research outputs found

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    Distributed Model Reference Adaptive Control for Vehicle Platoons with Uncertain Dynamics

    Get PDF
    This paper proposes a distributed model reference adaptive controller (DMRAC) for vehicle platoons with constant spacing policy, subjected to uncertainty in control effectiveness and inertial time lag. It formulates the uncertain vehicle dynamics as a matched uncertainty, and is applicable for both directed and undirected topologies. The directed topology must contain at least one spanning tree with the leader as a root node, while the undirected topology must be static and connected with at least one follower receiving information from the leader. The proposed control structure consists of a reference model and a main control system. The reference model is a closed-loop system constructed from the nominal model of each follower vehicle and a reference control signal. The main control system consists of a nominal control signal based on cooperative state feedback and an adaptive term. The nominal control signal allows the followers cooperatively track the leader, while the adaptive term suppresses the effects of uncertainties. Stability analysis shows that global tracking errors with respect to the reference model and with respect to the leader are asymptotically stable. The states of all followers synchronize to both the reference and leader states. Moreover, with the existence of unknown external disturbances, the global tracking errors remain uniformly ultimately bounded. The performance of the controlled system is verified through the simulations and validates the efficacy of the proposed controller

    Robust Distributed Formation Control of UAVs with Higher-Order Dynamics

    Get PDF
    In this thesis, we introduce distributed formation control strategies to reach an intended linear formation for agents with a diverse array of dynamics. The suggested technique is distributed entirely, does not include inter-agent cooperation or a barrier of orientation, and can be applied using relative location information gained by agents in their local cooperation frames. We illustrate how the control optimized for agents with the simpler dynamic model, i.e., the dynamics of the single integrator, can be expanded to holonomic agents with higher dynamics such as quadrotors and non-holonomic agents such as unicycles and cars. Our suggested approach makes feedback saturations, unmodelled dynamics, and switches stable in the sensing topology. We also indicate that the control is relaxed as agents will travel along with a rotated and scaled control direction without disrupting the convergence to the desired formation. We can implement this observation to design a distributed strategy for preventing collisions. In simulations, we explain the suggested solution and further introduce a distributed robotic framework to experimentally validate the technique. Our experimental platform is made up of off-the-shelf devices that can be used to evaluate other multi-agent algorithms and verify them

    Consensus Tracking and Containment in Multiagent Networks With State Constraints

    Get PDF
    The ability of tracking is an important prerequisite for multiagent networks to perform collective activities. This article investigates the problem of containment for a weighted multiagent network with continuous-time agents under state constraints. The network is composed of uninformed and informed agents, where the latter receive external inputs. A new general class of distributed nonlinear controllers is designed for accomplishing both containment and consensus tracking, where the state of each agent is required to stay in its desired convex constraint set. We show that, by using matrix analysis, convex analysis, and Lyapunov theory, all agents eventually converge to the convex hull formed by the external inputs while they obey their constraints during the transience. No relationship is assumed between the convex hull and the intersection of all constraint sets. The consensus tracking problem with a single external input is also solved under this framework. As a generalization, we tackle the multiscaled constrained containment problem, where agents can specify their desired buffer zones by either zooming in or zooming out the convex hull. Numerical examples are provided to illustrate the theoretical results
    • …
    corecore