327 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    LoRa in the Field: Insights from Networking the Smart City Hamburg with RIOT

    Full text link
    Inter-connected sensors and actuators have scaled down to small embedded devices such as wearables, and at the same time meet a massive deployment at the Internet edge: the Internet of Things (IoT). Many of these IoT devices run on low-power batteries and are forced to operate on very constrained resources, namely slow CPUs, tiny memories, and low-power radios. Establishing a network infrastructure that is energy efficient, wireless, and still covers a wide area is a larger challenge in this regime. LoRa is a low complexity long range radio technology, which tries to meet these challenges.With LoRaWAN a network model for widespread deployment has been established, which enjoys open public LoRaWAN dissemination such as with the infrastructure of TheThingsNetwork. In this paper, we report about our experiences with developing and deploying LoRa-based smart city applications as part of the MONICA project in Hamburg. Our contributions are twofold. First, we describe the design and implementation of end-to-end IoT applications based on the friendly IoT operating system RIOT. Second, we report on measurements and evaluations of our large field trials during several public events in the city of Hamburg. Our results show that LoRaWAN provides a suitable communication layer for a variety of Smart City use-cases and IoT applications, but also identifies its limitations and weaknesses.Comment: 6 pages, 10 figure

    Sub-GHz LPWAN network coexistence, management and virtualization : an overview and open research challenges

    Get PDF
    The IoT domain is characterized by many applications that require low-bandwidth communications over a long range, at a low cost and at low power. Low power wide area networks (LPWANs) fulfill these requirements by using sub-GHz radio frequencies (typically 433 or 868 MHz) with typical transmission ranges in the order of 1 up to 50 km. As a result, a single base station can cover large areas and can support high numbers of connected devices (> 1000 per base station). Notorious initiatives in this domain are LoRa, Sigfox and the upcoming IEEE 802.11ah (or "HaLow") standard. Although these new technologies have the potential to significantly impact many IoT deployments, the current market is very fragmented and many challenges exists related to deployment, scalability, management and coexistence aspects, making adoption of these technologies difficult for many companies. To remedy this, this paper proposes a conceptual framework to improve the performance of LPWAN networks through in-network optimization, cross-technology coexistence and cooperation and virtualization of management functions. In addition, the paper gives an overview of state of the art solutions and identifies open challenges for each of these aspects

    A Survey on Long-Range Wide-Area Network Technology Optimizations

    Get PDF
    Long-Range Wide-Area Network (LoRaWAN) enables flexible long-range service communications with low power consumption which is suitable for many IoT applications. The densification of LoRaWAN, which is needed to meet a wide range of IoT networking requirements, poses further challenges. For instance, the deployment of gateways and IoT devices are widely deployed in urban areas, which leads to interference caused by concurrent transmissions on the same channel. In this context, it is crucial to understand aspects such as the coexistence of IoT devices and applications, resource allocation, Media Access Control (MAC) layer, network planning, and mobility support, that directly affect LoRaWAN’s performance.We present a systematic review of state-of-the-art works for LoRaWAN optimization solutions for IoT networking operations. We focus on five aspects that directly affect the performance of LoRaWAN. These specific aspects are directly associated with the challenges of densification of LoRaWAN. Based on the literature analysis, we present a taxonomy covering five aspects related to LoRaWAN optimizations for efficient IoT networks. Finally, we identify key research challenges and open issues in LoRaWAN optimizations for IoT networking operations that must be further studied in the future

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    A Review of Low Power Wide Area Technology in Licensed and Unlicensed Spectrum for IoT Use Cases

    Get PDF
    There are many platforms in licensed and license free spectrum that support LPWA (low power wide area) technology in the current markets. However, lack of standardization of the different platforms can be a challenge for an interoperable IoT environment. Therefore understanding the features of each technology platform is essential to be able to differentiate how the technology can be matched to a specific IoT application profile. This paper provides an analysis of LPWA underlying technology in licensed and unlicensed spectrum by means of literature review and comparative assessment of Sigfox, LoRa, NB-IoT and LTE-M. We review their technical aspect and discussed the pros and cons in terms of their technical and other deployment features. General IoT application requirements is also presented and linked to the deployment factors to give an insight of how different applications profiles is associated to the right technology platform, thus provide a simple guideline on how to match a specific application profile with the best fit connectivity features
    • …
    corecore