51 research outputs found

    Depth sequence coding with hierarchical partitioning and spatial-domain quantization

    Get PDF
    Depth coding in 3D-HEVC deforms object shapes due to block-level edge-approximation and lacks efficient techniques to exploit the statistical redundancy, due to the frame-level clustering tendency in depth data, for higher coding gain at near-lossless quality. This paper presents a standalone mono-view depth sequence coder, which preserves edges implicitly by limiting quantization to the spatial-domain and exploits the frame-level clustering tendency efficiently with a novel binary tree-based decomposition (BTBD) technique. The BTBD can exploit the statistical redundancy in frame-level syntax, motion components, and residuals efficiently with fewer block-level prediction/coding modes and simpler context modeling for context-adaptive arithmetic coding. Compared with the depth coder in 3D-HEVC, the proposed one has achieved significantly lower bitrate at lossless to near-lossless quality range for mono-view coding and rendered superior quality synthetic views from the depth maps, compressed at the same bitrate, and the corresponding texture frames. © 1991-2012 IEEE

    Deep Graph-Convolutional Image Denoising

    Full text link
    Non-local self-similarity is well-known to be an effective prior for the image denoising problem. However, little work has been done to incorporate it in convolutional neural networks, which surpass non-local model-based methods despite only exploiting local information. In this paper, we propose a novel end-to-end trainable neural network architecture employing layers based on graph convolution operations, thereby creating neurons with non-local receptive fields. The graph convolution operation generalizes the classic convolution to arbitrary graphs. In this work, the graph is dynamically computed from similarities among the hidden features of the network, so that the powerful representation learning capabilities of the network are exploited to uncover self-similar patterns. We introduce a lightweight Edge-Conditioned Convolution which addresses vanishing gradient and over-parameterization issues of this particular graph convolution. Extensive experiments show state-of-the-art performance with improved qualitative and quantitative results on both synthetic Gaussian noise and real noise

    High-speed surface profilometry based on an adaptive microscope with axial chromatic encoding

    Get PDF
    An adaptive microscope with axial chromatic encoding is designed and developed, namely the AdaScope. With the ability to confocally address any locations within the measurement volume, the AdaScope provides the hardware foundation for a cascade measurement strategy to be developed, dramatically accelerating the speed of 3D confocal microscopy

    Deep Graph-Convolutional Image Denoising

    Get PDF
    3noNon-local self-similarity is well-known to be an effective prior for the image denoising problem. However, little work has been done to incorporate it in convolutional neural networks, which surpass non-local model-based methods despite only exploiting local information. In this paper, we propose a novel end-to-end trainable neural network architecture employing layers based on graph convolution operations, thereby creating neurons with non-local receptive fields. The graph convolution operation generalizes the classic convolution to arbitrary graphs. In this work, the graph is dynamically computed from similarities among the hidden features of the network, so that the powerful representation learning capabilities of the network are exploited to uncover self-similar patterns. We introduce a lightweight Edge-Conditioned Convolution which addresses vanishing gradient and over-parameterization issues of this particular graph convolution. Extensive experiments show state-of-the-art performance with improved qualitative and quantitative results on both synthetic Gaussian noise and real noise.partially_openopenValsesia D.; Fracastoro G.; Magli E.Valsesia, D.; Fracastoro, G.; Magli, E

    Light Field compression and manipulation via residual convolutional neural network

    Get PDF
    Light field (LF) imaging has gained significant attention due to its recent success in microscopy, 3-dimensional (3D) displaying and rendering, augmented and virtual reality usage. Postprocessing of LF enables us to extract more information from a scene compared to traditional cameras. However, the use of LF is still a research novelty because of the current limitations in capturing high-resolution LF in all of its four dimensions. While researchers are actively improving methods of capturing high-resolution LF\u27s, using simulation, it is possible to explore a high-quality captured LF\u27s properties. The immediate concerns following the LF capture are its storage and processing time. A rich LF occupies a large chunk of memory ---order of multiple gigabytes per LF---. Also, most feature extraction techniques associated with LF postprocessing involve multi-dimensional integration that requires access to the whole LF and is usually time-consuming. Recent advancements in computer processing units made it possible to simulate realistic images using physical-based rendering software. In this work, at first, a transformation function is proposed for building a camera array (CA) to capture the same portion of LF from a scene that a standard plenoptic camera (SPC) can acquire. Using this transformation, LF simulation with similar properties as a plenoptic camera will become trivial in any rendering software. Artificial intelligence (AI) and machine learning (ML) algorithms ---when deployed on the new generation of GPUs--- are faster than ever. It is possible to generate and train large networks with millions of trainable parameters to learn very complex features. Here, residual convolutional neural network (RCNN) structures are employed to build complex networks for compression and feature extraction from an LF. By combining state-of-the-art image compression and RCNN, I have created a compression pipeline. The proposed pipeline\u27s bit per pixel (bpp) ratio is 0.0047 on average. I show that with a 1% compression time cost and 18x speedup for decompression, our methods reconstructed LFs have better structural similarity index metric (SSIM) and comparable peak signal-to-noise ratio (PSNR) compared to the state-of-the-art video compression techniques used to compress LFs. In the end, using RCNN, I created a network called RefNet, for extracting a group of 16 refocused images from a raw LF. The training parameters of the 16 LFs are set to (\alpha=0.125, 0.250, 0.375, ..., 2.0) for training. I show that RefNet is 134x faster than the state-of-the-art refocusing technique. The RefNet is also superior in color prediction compared to the state-of-the-art ---Fourier slice and shift-and-sum--- methods

    Depth-Map-Assisted Texture and Depth Map Super-Resolution

    Get PDF
    With the development of video technology, high definition video and 3D video applications are becoming increasingly accessible to customers. The interactive and vivid 3D video experience of realistic scenes relies greatly on the amount and quality of the texture and depth map data. However, due to the limitations of video capturing hardware and transmission bandwidth, transmitted video has to be compressed which degrades, in general, the received video quality. This means that it is hard to meet the users’ requirements of high definition and visual experience; it also limits development of future applications. Therefore, image/video super-resolution techniques have been proposed to address this issue. Image super-resolution aims to reconstruct a high resolution image from single or multiple low resolution images captured of the same scene under different conditions. Based on the image type that needs to be super-resolved, image super-resolution includes texture and depth image super-resolutions. If classified based on the implementation methods, there are three main categories: interpolation-based, reconstruction-based and learning-based super-resolution algorithms. This thesis focuses on exploiting depth data in interpolation-based super-resolution algorithms for texture video and depth maps. Two novel texture and one depth super-resolution algorithms are proposed as the main contributions of this thesis. The first texture super-resolution algorithm is carried out in the Mixed Resolution (MR) multiview video system where at least one of the views is captured at Low Resolution (LR), while the others are captured at Full Resolution (FR). In order to reduce visual uncomfortableness and adapt MR video format for free-viewpoint television, the low resolution views are super-resolved to the target full resolution by the proposed virtual view assisted super resolution algorithm. The inter-view similarity is used to determine whether to fill the missing pixels in the super-resolved frame by virtual view pixels or by spatial interpolated pixels. The decision mechanism is steered by the texture characteristics of the neighbors of each missing pixel. Thus, the proposed method can recover the details in regions with edges while maintaining good quality at smooth areas by properly exploiting the high quality virtual view pixels and the directional correlation of pixels. The second texture super-resolution algorithm is based on the Multiview Video plus Depth (MVD) system, which consists of textures and the associated per-pixel depth data. In order to further reduce the transmitted data and the quality degradation of received video, a systematical framework to downsample the original MVD data and later on to super-resolved the LR views is proposed. At the encoder side, the rows of the two adjacent views are downsampled following an interlacing and complementary fashion, whereas, at the decoder side, the discarded pixels are recovered by fusing the virtual view pixels with the directional interpolated pixels from the complementary downsampled views. Consequently, with the assistance of virtual views, the proposed approach can effectively achieve these two goals. From previous two works, we can observe that depth data has big potential to be used in 3D video enhancement. However, due to the low spatial resolution of Time-of-Flight (ToF) depth camera generated depth images, their applications have been limited. Hence, in the last contribution of this thesis, a planar-surface-based depth map super-resolution approach is presented, which interpolates depth images by exploiting the equation of each detected planar surface. Both quantitative and qualitative experimental results demonstrate the effectiveness and robustness of the proposed approach over benchmark methods

    Visual and Geometric Data Compression for Immersive Technologies

    Get PDF
    The contributions of this thesis are new compression algorithms for light field images and point cloud geometry. Light field imaging attracted wide attention in the recent decade, partly due to emergence of relatively low-cost handheld light field cameras designed for commercial purposes whereas point clouds are used more and more frequently in immersive technologies, replacing other forms of 3D representation. We obtain successful coding performance by combining conventional image processing methods, entropy coding, learning-based disparity estimation and optimization of neural networks for context probability modeling. On the light field coding side, we develop a lossless light field coding method which uses learning-based disparity estimations to predict any view in a light field from a set of reference views. On the point cloud geometry compression side, we develop four different algorithms. The first two of these algorithms follow the so-called bounding volumes approach which initially represents a part of the point cloud in two depth maps where the remaining points of the cloud are contained in a bounding volume which can be derived using only the two depth maps that are losslessly transmitted. One of the two algorithms is a lossy coder that reconstructs some of the remaining points in several steps which involve conventional image processing and image coding techniques. The other one is a lossless coder which applies a novel context arithmetic coding approach involving gradual expansion of the reconstructed point cloud into neighboring voxels. The last two of the proposed point cloud compression algorithms use neural networks for context probability modeling for coding the octree representation of point clouds using arithmetic coding. One of these two algorithms is a learning-based intra-frame coder which requires an initial training stage on a set of training point clouds. The lastly presented algorithm is an inter-frame (sequence) encoder which incorporates the neural network training into the encoding stage, thus for each sequence of point clouds, a specific neural network model is optimized which is also transmitted as a header in the bitstream

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing
    • …
    corecore