6 research outputs found

    An Interactive App for Color Deficient Viewers

    Get PDF
    Color deficient individuals have trouble seeing color contrasts that could be very apparent to individuals with normal color vision. For example, for some color deficient individuals, red and green apples do not have the striking contrast they have for those with normal color vision, or the abundance of red cherries in a tree is not immediately clear due to a lack of perceived contrast. We present a smartphone app that enables color deficient users to visualize such problematic color contrasts in order to help them with daily tasks. The user interacts with the app through the touchscreen. As the user traces a path around the touchscreen, the colors in the image change continuously via a transform that enhances contrasts that are weak or imperceptible for the user under native viewing conditions. Specifically, we propose a transform that shears the data along lines parallel to the dimension corresponding to the affected cone sensitivity of the user. The amount and direction of shear are controlled by the user'sfinger movement over the touchscreen allowing them to visualize these contrasts. Using the GPU, this simple transformation, consisting of a linear shear and translation, is performed efficiently on each pixel and in real-time with the changing position of the user's finger. The user can use the app to aid daily tasks such as distinguishing between red and green apples or picking out ripe bananas

    TOWARDS A COMPUTATIONAL MODEL OF RETINAL STRUCTURE AND BEHAVIOR

    Get PDF
    Human vision is our most important sensory system, allowing us to perceive our surroundings. It is an extremely complex process that starts with light entering the eye and ends inside of the brain, with most of its mechanisms still to be explained. When we observe a scene, the optics of the eye focus an image on the retina, where light signals are processed and sent all the way to the visual cortex of the brain, enabling our visual sensation. The progress of retinal research, especially on the topography of photoreceptors, is often tied to the progress of retinal imaging systems. The latest adaptive optics techniques have been essential for the study of the photoreceptors and their spatial characteristics, leading to discoveries that challenge the existing theories on color sensation. The organization of the retina is associated with various perceptive phenomena, some of them are straightforward and strictly related to visual performance like visual acuity or contrast sensitivity, but some of them are more difficult to analyze and test and can be related to the submosaics of the three classes of cone photoreceptors, like how the huge interpersonal differences between the ratio of different cone classes result in negligible differences in color sensation, suggesting the presence of compensation mechanisms in some stage of the visual system. In this dissertation will be discussed and addressed issues regarding the spatial organization of the photoreceptors in the human retina. A computational model has been developed, organized into a modular pipeline of extensible methods each simulating a different stage of visual processing. It does so by creating a model of spatial distribution of cones inside of a retina, then applying descriptive statistics for each photoreceptor to contribute to the creation of a graphical representation, based on a behavioral model that determines the absorption of photoreceptors. These apparent color stimuli are reconstructed in a representation of the observed scene. The model allows the testing of different parameters regulating the photoreceptor's topography, in order to formulate hypothesis on the perceptual differences arising from variations in spatial organization

    Colour and Colorimetry Multidisciplinary Contributions Vol. XIb

    Get PDF
    It is well known that the subject of colour has an impact on a range of disciplines. Colour has been studied in depth for many centuries, and as well as contributing to theoretical and scientific knowledge, there have been significant developments in applied colour research, which has many implications for the wider socio-economic community. At the 7th Convention of Colorimetry in Parma, on the 1st October 2004, as an evolution of the previous SIOF Group of Colorimetry and Reflectoscopy founded in 1995, the "Gruppo del Colore" was established. The objective was to encourage multi and interdisciplinary collaboration and networking between people in Italy that addresses problems and issues on colour and illumination from a professional, cultural and scientific point of view. On the 16th of September 2011 in Rome, in occasion of the VII Color Conference, the members assembly decided to vote for the autonomy of the group. The autonomy of the Association has been achieved in early 2012. These are the proceedings of the English sessions of the XI Conferenza del Colore

    Adaptive color visualization for dichromats using a customized hierarchical palette

    No full text
    corecore