209 research outputs found

    Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression

    Get PDF
    International audienceWe propose a new connectivity-based progressivecompression approach for triangle meshes. The keyidea is to adapt the quantization precision to the resolutionof each intermediate mesh so as to optimizethe rate-distortion trade-off. This adaptation is automaticallydetermined during the encoding processand the overhead is efficiently encoded using geometricalprediction techniques. We also introducean optimization of the geometry coding by usinga bijective discrete rotation. Results show that ourapproach delivers a better rate-distortion behaviorthan both connectivity-based and geometry-basedcompression state of the art method

    Deformable meshes for shape recovery: models and applications

    Get PDF
    With the advance of scanning and imaging technology, more and more 3D objects become available. Among them, deformable objects have gained increasing interests. They include medical instances such as organs, a sequence of objects in motion, and objects of similar shapes where a meaningful correspondence can be established between each other. Thus, it requires tools to store, compare, and retrieve them. Many of these operations depend on successful shape recovery. Shape recovery is the task to retrieve an object from the environment where its geometry is hidden or implicitly known. As a simple and versatile tool, mesh is widely used in computer graphics for modelling and visualization. In particular, deformable meshes are meshes which can take the deformation of deformable objects. They extend the modelling ability of meshes. This dissertation focuses on using deformable meshes to approach the 3D shape recovery problem. Several models are presented to solve the challenges for shape recovery under different circumstances. When the object is hidden in an image, a PDE deformable model is designed to extract its surface shape. The algorithm uses a mesh representation so that it can model any non-smooth surface with an arbitrary precision compared to a parametric model. It is more computational efficient than a level-set approach. When the explicit geometry of the object is known but is hidden in a bank of shapes, we simplify the deformation of the model to a graph matching procedure through a hierarchical surface abstraction approach. The framework is used for shape matching and retrieval. This idea is further extended to retain the explicit geometry during the abstraction. A novel motion abstraction framework for deformable meshes is devised based on clustering of local transformations and is successfully applied to 3D motion compression

    Study of Subjective and Objective Quality Evaluation of 3D Point Cloud Data by the JPEG Committee

    Full text link
    The SC29/WG1 (JPEG) Committee within ISO/IEC is currently working on developing standards for the storage, compression and transmission of 3D point cloud information. To support the creation of these standards, the committee has created a database of 3D point clouds representing various quality levels and use-cases and examined a range of 2D and 3D objective quality measures. The examined quality measures are correlated with subjective judgments for a number of compression levels. In this paper we describe the database created, tests performed and key observations on the problems of 3D point cloud quality assessment

    Representation and coding of 3D video data

    Get PDF
    Livrable D4.1 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D4.1 du projet

    Scalable wavelet-based coding of irregular meshes with interactive region-of-interest support

    Get PDF
    This paper proposes a novel functionality in wavelet-based irregular mesh coding, which is interactive region-of-interest (ROI) support. The proposed approach enables the user to define the arbitrary ROIs at the decoder side and to prioritize and decode these regions at arbitrarily high-granularity levels. In this context, a novel adaptive wavelet transform for irregular meshes is proposed, which enables: 1) varying the resolution across the surface at arbitrarily fine-granularity levels and 2) dynamic tiling, which adapts the tile sizes to the local sampling densities at each resolution level. The proposed tiling approach enables a rate-distortion-optimal distribution of rate across spatial regions. When limiting the highest resolution ROI to the visible regions, the fine granularity of the proposed adaptive wavelet transform reduces the required amount of graphics memory by up to 50%. Furthermore, the required graphics memory for an arbitrary small ROI becomes negligible compared to rendering without ROI support, independent of any tiling decisions. Random access is provided by a novel dynamic tiling approach, which proves to be particularly beneficial for large models of over 10(6) similar to 10(7) vertices. The experiments show that the dynamic tiling introduces a limited lossless rate penalty compared to an equivalent codec without ROI support. Additionally, rate savings up to 85% are observed while decoding ROIs of tens of thousands of vertices
    • …
    corecore