681 research outputs found

    Adaptive channel selection for DOA estimation in MIMO radar

    Full text link
    We present adaptive strategies for antenna selection for Direction of Arrival (DoA) estimation of a far-field source using TDM MIMO radar with linear arrays. Our treatment is formulated within a general adaptive sensing framework that uses one-step ahead predictions of the Bayesian MSE using a parametric family of Weiss-Weinstein bounds that depend on previous measurements. We compare in simulations our strategy with adaptive policies that optimize the Bobrovsky- Zaka{\i} bound and the Expected Cram\'er-Rao bound, and show the performance for different levels of measurement noise.Comment: Submitted to the 25th European Signal Processing Conference (EUSIPCO), 201

    Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding

    Full text link
    In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052

    Target Localization in MIMO OFDM Radars Adopting Adaptive Power Allocation among Selected Sub-Carriers

    Get PDF
    Multiple-input multiple-output (MIMO) radar has been introduced to enhance the performance of classical radar systems. Nevertheless, radar cross sections (RCS) fluctuations remains a known problem in radars. Target localization using narrowband signal produces reduced accuracy due to RCS fluctuations. One of the solution to this problem is utilization of frequency diversity of wideband signal. This paper presents target localization in MIMO radars using an adaptive orthogonal frequency division multiplexing (OFDM) waveform for effective frequency diversity utilization. Each transmitting antenna transmits an OFDM signal in different time slots and received by the each receiving antenna in the receiver array. A joint direction-of-departure (DOD) and direction-of-arrival (DOA) estimation scheme is applied to each of the OFDM sub-carrier using two-way multiple signal classification (MUSIC) algorithm. The estimation results at each sub-carrier are combined based on majority decision using angle histogram (non-parametric approach) to formulate the final wideband angle estimation. In addition, an adaptive power allocation among the sub-carriers is implemented, where the system evaluates the signal quality at each sub-carrier and consequently formulates a feedback to the MIMO transmitting side. The following transmission will comprise of OFDM waveform that focuses the transmit power at selected sub-carriers only. The sub-carrier selection is based on singular values obtained from singular value decomposition operation at each of the sub-carrier. The performance of the proposed scheme is evaluated through numerical simulations as well as validation by experiments in a radio anechoic chamber. It was demonstrated that the usage of larger number of sub-carriers improves the angle estimation accuracy

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system

    Innovative Adaptive Techniques for Multi Channel Spaceborne SAR Systems

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-known technology which allows to coherently combine multiple returns from (typically) ground-based targets from a moving radar mounted either on an airborne or on a space-borne vehicle. The relative motion between the targets on ground and the platform causes a Doppler effect, which is exploited to discriminate along-track positions of targets themselves. In addition, as most of conventional radar, a pulsed wide-band waveform is transmitted periodically, thus allowing even a radar discrimination capability in the range direction (i.e. in distance). For side-looking acquisition geometries, the along-track and the range directions are almost orthogonal, so that the two dimensional target discrimination capabiliy results in the possibility to produce images of the illuminated area on ground. A side-looking geometry consists in the radar antenna to be, either mechanically or electronically, oriented perpendicular to the observed area. Nowadays technology allows discrimination capability (also referred to as resolution) in both alongtrack and range directions in the order of few tenths of centimeters. Since the SAR is a microwave active sensor, this technology assure the possibility to produce images of the terrain independently of the sunlight illumination and/or weather conditions. This makes the SAR a very useful instrument for monitoring and mapping both the natural and the artificial activities over the Earth’s surface. Among all the limitations of a single-channel SAR system, this work focuses over some of them which are briefly listed below: a) the performance achievable in terms of resolution are usually paid in terms of system complexity, dimension, mass and cost; b) since the SAR is a coherent active sensor, it is vulnerable to both intentionally and unintentionally radio-frequency interferences which might limit normal system operability; c) since the Doppler effect it is used to discriminate targets (assumed to be stationary) on the ground, this causes an intrinsic ambiguity in the interpretation of backscattered returns from moving targets. These drawbacks can be easily overcome by resorting to a Multi-cannel SAR (M-SAR) system
    • …
    corecore