761 research outputs found

    A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry

    Full text link
    We develop a high-order kinetic scheme for entropy-based moment models of a one-dimensional linear kinetic equation in slab geometry. High-order spatial reconstructions are achieved using the weighted essentially non-oscillatory (WENO) method, and for time integration we use multi-step Runge-Kutta methods which are strong stability preserving and whose stages and steps can be written as convex combinations of forward Euler steps. We show that the moment vectors stay in the realizable set using these time integrators along with a maximum principle-based kinetic-level limiter, which simultaneously dampens spurious oscillations in the numerical solutions. We present numerical results both on a manufactured solution, where we perform convergence tests showing our scheme converges of the expected order up to the numerical noise from the numerical optimization, as well as on two standard benchmark problems, where we show some of the advantages of high-order solutions and the role of the key parameter in the limiter

    Synergies between Numerical Methods for Kinetic Equations and Neural Networks

    Get PDF
    The overarching theme of this work is the efficient computation of large-scale systems. Here we deal with two types of mathematical challenges, which are quite different at first glance but offer similar opportunities and challenges upon closer examination. Physical descriptions of phenomena and their mathematical modeling are performed on diverse scales, ranging from nano-scale interactions of single atoms to the macroscopic dynamics of the earth\u27s atmosphere. We consider such systems of interacting particles and explore methods to simulate them efficiently and accurately, with a focus on the kinetic and macroscopic description of interacting particle systems. Macroscopic governing equations describe the time evolution of a system in time and space, whereas the more fine-grained kinetic description additionally takes the particle velocity into account. The study of discretizing kinetic equations that depend on space, time, and velocity variables is a challenge due to the need to preserve physical solution bounds, e.g. positivity, avoiding spurious artifacts and computational efficiency. In the pursuit of overcoming the challenge of computability in both kinetic and multi-scale modeling, a wide variety of approximative methods have been established in the realm of reduced order and surrogate modeling, and model compression. For kinetic models, this may manifest in hybrid numerical solvers, that switch between macroscopic and mesoscopic simulation, asymptotic preserving schemes, that bridge the gap between both physical resolution levels, or surrogate models that operate on a kinetic level but replace computationally heavy operations of the simulation by fast approximations. Thus, for the simulation of kinetic and multi-scale systems with a high spatial resolution and long temporal horizon, the quote by Paul Dirac is as relevant as it was almost a century ago. The first goal of the dissertation is therefore the development of acceleration strategies for kinetic discretization methods, that preserve the structure of their governing equations. Particularly, we investigate the use of convex neural networks, to accelerate the minimal entropy closure method. Further, we develop a neural network-based hybrid solver for multi-scale systems, where kinetic and macroscopic methods are chosen based on local flow conditions. Furthermore, we deal with the compression and efficient computation of neural networks. In the meantime, neural networks are successfully used in different forms in countless scientific works and technical systems, with well-known applications in image recognition, and computer-aided language translation, but also as surrogate models for numerical mathematics. Although the first neural networks were already presented in the 1950s, the scientific discipline has enjoyed increasing popularity mainly during the last 15 years, since only now sufficient computing capacity is available. Remarkably, the increasing availability of computing resources is accompanied by a hunger for larger models, fueled by the common conception of machine learning practitioners and researchers that more trainable parameters equal higher performance and better generalization capabilities. The increase in model size exceeds the growth of available computing resources by orders of magnitude. Since 20122012, the computational resources used in the largest neural network models doubled every 3.43.4 months\footnote{\url{https://openai.com/blog/ai-and-compute/}}, opposed to Moore\u27s Law that proposes a 22-year doubling period in available computing power. To some extent, Dirac\u27s statement also applies to the recent computational challenges in the machine-learning community. The desire to evaluate and train on resource-limited devices sparked interest in model compression, where neural networks are sparsified or factorized, typically after training. The second goal of this dissertation is thus a low-rank method, originating from numerical methods for kinetic equations, to compress neural networks already during training by low-rank factorization. This dissertation thus considers synergies between kinetic models, neural networks, and numerical methods in both disciplines to develop time-, memory- and energy-efficient computational methods for both research areas
    corecore