16,593 research outputs found

    DS-CDMA microcellular networks with adaptive antennas

    Get PDF

    Low-complexity smart antenna methods for third-generation W-CDMA systems

    Get PDF

    Volume visualization of time-varying data using parallel, multiresolution and adaptive-resolution techniques

    Get PDF
    This paper presents a parallel rendering approach that allows high-quality visualization of large time-varying volume datasets. Multiresolution and adaptive-resolution techniques are also incorporated to improve the efficiency of the rendering. Three basic steps are needed to implement this kind of an application. First we divide the task through decomposition of data. This decomposition can be either temporal or spatial or a mix of both. After data has been divided, each of the data portions is rendered by a separate processor to create sub-images or frames. Finally these sub-images or frames are assembled together into a final image or animation. After developing this application, several experiments were performed to show that this approach indeed saves time when a reasonable number of processors are used. Also, we conclude that the optimal number of processors is dependent on the size of the dataset used

    Network planning for third-generation mobile radio systems

    Get PDF

    High throughput MIMO-OFDM WLAN for urban hotspots

    Get PDF

    A progressive refinement approach for the visualisation of implicit surfaces

    Get PDF
    Visualising implicit surfaces with the ray casting method is a slow procedure. The design cycle of a new implicit surface is, therefore, fraught with long latency times as a user must wait for the surface to be rendered before being able to decide what changes should be introduced in the next iteration. In this paper, we present an attempt at reducing the design cycle of an implicit surface modeler by introducing a progressive refinement rendering approach to the visualisation of implicit surfaces. This progressive refinement renderer provides a quick previewing facility. It first displays a low quality estimate of what the final rendering is going to be and, as the computation progresses, increases the quality of this estimate at a steady rate. The progressive refinement algorithm is based on the adaptive subdivision of the viewing frustrum into smaller cells. An estimate for the variation of the implicit function inside each cell is obtained with an affine arithmetic range estimation technique. Overall, we show that our progressive refinement approach not only provides the user with visual feedback as the rendering advances but is also capable of completing the image faster than a conventional implicit surface rendering algorithm based on ray casting
    • 

    corecore