116 research outputs found

    A 12b 250 MS/s Pipelined ADC With Virtual Ground Reference Buffers

    Get PDF
    The virtual ground reference buffer (VGRB) technique is introduced as a means to improve the performance of switched-capacitor circuits. The technique enhances the performance by improving the feedback factor of the op-amp without affecting the signal gain. The bootstrapping action of the level-shifting buffers relaxes key op-amp performance requirements including unity-gain bandwidth, noise, open-loop gain and offset compared with conventional circuits. This reduces the design complexity and the power consumption of op-amp based circuits. Based on this technique, a 12 b pipelined ADC is implemented in 65 nm CMOS that achieves 67.0 dB SNDR at 250 MS/s and consumes 49.7 mW of power from a 1.2 V power supply

    A Low-Power, Reconfigurable, Pipelined ADC with Automatic Adaptation for Implantable Bioimpedance Applications

    Get PDF
    Biomedical monitoring systems that observe various physiological parameters or electrochemical reactions typically cannot expect signals with fixed amplitude or frequency as signal properties can vary greatly even among similar biosignals. Furthermore, advancements in biomedical research have resulted in more elaborate biosignal monitoring schemes which allow the continuous acquisition of important patient information. Conventional ADCs with a fixed resolution and sampling rate are not able to adapt to signals with a wide range of variation. As a result, reconfigurable analog-to-digital converters (ADC) have become increasingly more attractive for implantable biosensor systems. These converters are able to change their operable resolution, sampling rate, or both in order convert changing signals with increased power efficiency. Traditionally, biomedical sensing applications were limited to low frequencies. Therefore, much of the research on ADCs for biomedical applications focused on minimizing power consumption with smaller bias currents resulting in low sampling rates. However, recently bioimpedance monitoring has become more popular because of its healthcare possibilities. Bioimpedance monitoring involves injecting an AC current into a biosample and measuring the corresponding voltage drop. The frequency of the injected current greatly affects the amplitude and phase of the voltage drop as biological tissue is comprised of resistive and capacitive elements. For this reason, a full spectrum of measurements from 100 Hz to 10-100 MHz is required to gain a full understanding of the impedance. For this type of implantable biomedical application, the typical low power, low sampling rate analog-to-digital converter is insufficient. A different optimization of power and performance must be achieved. Since SAR ADC power consumption scales heavily with sampling rate, the converters that sample fast enough to be attractive for bioimpedance monitoring do not have a figure-of-merit that is comparable to the slower converters. Therefore, an auto-adapting, reconfigurable pipelined analog-to-digital converter is proposed. The converter can operate with either 8 or 10 bits of resolution and with a sampling rate of 0.1 or 20 MS/s. Additionally, the resolution and sampling rate are automatically determined by the converter itself based on the input signal. This way, power efficiency is increased for input signals of varying frequency and amplitude

    Analysis of Residue Probability Density Function and Comparator Offset Error in Pipelined ADCs

    Get PDF
    This paper presents a new approach to analyze the convergence of residue probability density function (pdf) in pipelined ADCs. Compared to the previous approaches, in the proposed approach, in addition to the analysis of residue pdfs for different input densities, the analysis of the sub-ADC comparator offsets impact on output pdf is possible. Using Fourier analysis, it will be shown that the residue density converges to uniformity. In the half-bit redundant structure, residue pdf concentrates in the center half of the stage full-scale range and 6 dB of extra resolution can be gained. Also, the share of each stage in this resolution improvement is investigated. Examining the sub-ADC threshold offsets impact on residue pdfs, it is observed that with respect to the impact on converter additional resolution, the final stages offset errors are more significant than the first stages offsets

    Low power 9-bit 500 kS/s 2-stage cyclic ADC using OTA variable bias current

    Get PDF
    This paper presents a 9-bit, 2-stage cyclic analog to digital converter (ADC) with a variable bias current control circuitry to reduce its power dissipation. Each stage outputs a three-bit digital word and the circuit requires four subcycles to perform a whole conversion. Since the accuracy required is higher in the first stage and first subcycle and decreases in subsequent cycles, the bias current of each operational transconductance amplifier is regulated depending on the subcycle of the conversion process. The resolution and sampling frequency of the converter make it suitable to be integrated with 8-bit CMOS imagers with column-parallel ADC architectures. The ADC has been designed using a 1.2 V 110 nm CMOS technology and the circuit consumes 27.9 µW at a sampling rate of 500 kS/s. At this sampling rate and at a 32 kHz input frequency, the circuit achieves 56 dB of SNDR and 9 bit ENOB. The Figure of Merit is 109 fJ/step.This work has been partially funded by Spanish Ministerio de Ciencia e Innovación (MCI), Agencia Estatal de Investigación (AEI) and European Region Development Fund (ERDF/FEDER) under grant RTI2018-097088-B-C3

    Equalization of Third-Order Intermodulation Products in Wideband Direct Conversion Receivers

    Get PDF
    This paper reports a SAW-less direct-conversion receiver which utilizes a mixed-signal feedforward path to regenerate and adaptively cancel IM3 products, thus accomplishing system-level linearization. The receiver system performance is dominated by a custom integrated RF front end implemented in 130-nm CMOS and achieves an uncorrected out-of-band IIP3 of -7.1 dBm under the worst-case UMTS FDD Region 1 blocking specifications. Under IM3 equalization, the receiver achieves an effective IIP3 of +5.3 dBm and meets the UMTS BER sensitivity requirement with 3.7 dB of margin

    Pipeline ADC with a Nonlinear Gain Stage and Digital Correction

    Get PDF
    The goal of this work was to design a pipeline analog to digital converter that can be calibrated and corrected in the digital domain. The scope of this work included the design, simulation and layout of major analog design blocks. The design uses an open loop gain stage to reduce power consumption, increase speed and relax small process size design requirements. These nonlinearities are corrected using a digital correction algorithm implemented in MATLAB

    High-Speed Low-Power Analog to Digital Converter for Digital Beam Forming Systems

    Get PDF
    abstract: Time-interleaved analog to digital converters (ADCs) have become critical components in high-speed communication systems. Consumers demands for smaller size, more bandwidth and more features from their communication systems have driven the market to use modern complementary metal-oxide-semiconductor (CMOS) technologies with shorter channel-length transistors and hence a more compact design. Downscaling the supply voltage which is required in submicron technologies benefits digital circuits in terms of power and area. Designing accurate analog circuits, however becomes more challenging due to the less headroom. One way to overcome this problem is to use calibration to compensate for the loss of accuracy in analog circuits. Time-interleaving increases the effective data conversion rate in ADCs while keeping the circuit requirements the same. However, this technique needs special considerations as other design issues associated with using parallel identical channels emerge. The first and the most important is the practical issue of timing mismatch between channels, also called sample-time error, which can directly affect the performance of the ADC. Many techniques have been developed to tackle this issue both in analog and digital domains. Most of these techniques have high complexities especially when the number of channels exceeds 2 and some of them are only valid when input signal is a single tone sinusoidal which limits the application. This dissertation proposes a sample-time error calibration technique which bests the previous techniques in terms of simplicity, and also could be used with arbitrary input signals. A 12-bit 650 MSPS pipeline ADC with 1.5 GHz analog bandwidth for digital beam forming systems is designed in IBM 8HP BiCMOS 130 nm technology. A front-end sample-and-hold amplifier (SHA) was also designed to compare with an SHA-less design in terms of performance, power and area. Simulation results show that the proposed technique is able to improve the SNDR by 20 dB for a mismatch of 50% of the sampling period and up to 29 dB at 37% of the Nyquist frequency. The designed ADC consumes 122 mW in each channel and the clock generation circuit consumes 142 mW. The ADC achieves 68.4 dB SNDR for an input of 61 MHz.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    All Digital, Background Calibration for Time-Interleaved and Successive Approximation Register Analog-to-Digital Converters

    Get PDF
    The growth of digital systems underscores the need to convert analog information to the digital domain at high speeds and with great accuracy. Analog-to-Digital Converter (ADC) calibration is often a limiting factor, requiring longer calibration times to achieve higher accuracy. The goal of this dissertation is to perform a fully digital background calibration using an arbitrary input signal for A/D converters. The work presented here adapts the cyclic Split-ADC calibration method to the time interleaved (TI) and successive approximation register (SAR) architectures. The TI architecture has three types of linear mismatch errors: offset, gain and aperture time delay. By correcting all three mismatch errors in the digital domain, each converter is capable of operating at the fastest speed allowed by the process technology. The total number of correction parameters required for calibration is dependent on the interleaving ratio, M. To adapt the Split-ADC method to a TI system, 2M+1 half-sized converters are required to estimate 3(2M+1) correction parameters. This thesis presents a 4:1 Split-TI converter that achieves full convergence in less than 400,000 samples. The SAR architecture employs a binary weight capacitor array to convert analog inputs into digital output codes. Mismatch in the capacitor weights results in non-linear distortion error. By adding redundant bits and dividing the array into individual unit capacitors, the Split-SAR method can estimate the mismatch and correct the digital output code. The results from this work show a reduction in the non-linear distortion with the ability to converge in less than 750,000 samples

    Reconfigurable low power robust pipeline ADC for Biomedical applications

    Get PDF
    Demand for high-performance analog-to-digital converter (ADC) integrated circuits (ICs) with optimal combined specifications of resolution, sampling rate and power consumption becomes dominant due to emerging applications in wireless communications, broad band transceivers, digital-intermediate frequency (IF) receivers and countless of digital devices. This research is dedicated to develop a pipeline ADC design methodology with minimum power dissipation, while keeping relatively high speed and high resolution
    corecore