79 research outputs found

    Advanced array processing techniques and systems

    Get PDF
    Research and development on smart antennas, which are recognized as a promising technique to improve the performance of mobile communications, have been extensive in the recent years. Smart antennas combine multiple antenna elements with a signal processing capability in both space and time to optimize its radiation and reception pattern automatically in response to the signal environment. This paper concentrates on the signal processing aspects of smart antenna systems. Smart antennas are often classified as either switched-beam or adaptive-array systems, for which a variety of algorithms have been developed to enhance the signal of interest and reject the interference. The antenna systems need to differentiate the desired signal from the interference, and normally requires either a priori knowledge or the signal direction to achieve its goal. There exists a variety of methods for direction of arrival (DOA) estimation with conflicting demands of accuracy and computation. Similarly, there are many algorithms to compute array weights to direct the maximum radiation of the array pattern toward the signal and place nulls toward the interference, each with its convergence property and computational complexity. This paper discusses some of the typical algorithms for DOA estimation and beamforming. The concept and details of each algorithm are provided. Smart antennas can significantly help in improving the performance of communication systems by increasing channel capacity and spectrum efficiency, extending range coverage, multiplexing channels with spatial division multiple access (SDMA), and compensating electronically for aperture distortion. They also reduce delay spread, multipath fading, co-channel interference, system complexity, bit error rates, and outage probability. In addition, smart antennas can locate mobile units or assist the location determination through DOA and range estimation. This capability can support and benefit many location-based services including emergency assistance, tracking services, safety services, billing services, and information services such as navigation, weather, traffic, and directory assistance

    Performance Comparison Between Music And Esprit Algorithms For Direction Estimation Of Arrival Signals

    Get PDF
    This thesis examines and compares the performance of Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) for the estimation of Direction of Arrival (DOA) of incoming signals to the smart antenna. The comparison of these two algorithms was done on the basis of parameters like number of array elements, number of incoming signals, angle difference between the incoming signals, number of the samples taken of signal, processing time and SNR ratio. These two algorithms were implemented with MATLAB and SIMULINK for the experimental purpose. After all the experiments performed, it was analyzed that results obtained from both of the software were almost same. Comparing MUSIC\u27s results with ESPRIT, it was found that MUSIC is less prone to error than ESPRIT for almost all parametric tests. This superiority of MUSIC made it desirable to recommend it for DOA estimation in smart antenna system

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Compact adaptive planar antenna arrays for robust satellite navigation systems

    Get PDF
    In den zurückliegenden zwei Jahrzehnten ist die Abhängigkeit der Industriegesellschaft von satellitengestützten Ortungssystemen, Navigationsdiensten und Zeitsignalen dramatisch gewachsen. Darauf aufbauende moderne Anwendungen reichen von hochgenauen Ortungsgeräten bis zu intelligenten Transportsystemen und von der Synchronisation mobiler Netzwerke zu Wetter- und Klimabeobachtung. Dies setzt neue höhere Standards in der Robustheit, Genauigkeit, Verfügbarkeit und Verlässlichkeit moderner Navigationsempfänger voraus. Möglich werden diese Verbesserungen aktuell mit der Einführung von Multiantennensystemen in den Navigationsgeräten. Jedoch wird die Nutzung dieses Ansatzes durch die größeren Abmessungen der Antennenarrays erschwert, weil standardmäßig der Elementabstand zu einer halben Freiraumwellenlänge gewählt wird, was im L Band ca. 10 cm bedeutet. In dieser Arbeit werden kompakte Antennenarrays für Navigationsempfänger mit geringerem Elementabstand vorgeschlagen, die eine Miniaturisierung der Empfängerabmessungen erlauben. Diese kompakten Arrays werden in ihrer Leistungsfähigkeit jedoch durch die negativen Effekte der Verkopplung zwischen den Einzelelementen beeinträchtigt. Für die Beurteilung der Empfängerleistungsfähigkeit existieren verschiedene Qualitätsparameter für Analyse und Entwurf der planaren Arrays. Damit werden z. B. Diversity Freiheitsgrade, Qualität der Richtungsschätzung, Polarisationsreinheit und die wechselseitigen Kopplungen gemessen und eine Entwurfsumgebung wird vorgestellt, in der das optimale kompakte Antennenarray für den jeweiligen Einsatzzweck ausgewählt und konfiguriert werden kann. Dieser Prozess wird durch eine Analyse des Rauschens und seiner Korrelationseigenschaften für den gesamten Empfänger begleitet. Darüber hinaus wird ein analytisches Modell des effektiven carrier-to-interference-plus-noise ratio abgeleitet, um die Leistungsfähigkeit der Navigationsempfänger in Szenarien mit Störsignalen zu untersuchen. Schließlich werden diese Betrachtungen durch den Aufbau eines kompletten Satellitennavigationsempfängers ergänzt, um mit ihm den Nachweis der Funktionsfähigkeit und der stabilen Funktion des entworfenen Systems mit kompaktem Array unter Störereinfluss bei Laborbedingungen und in den reale Außeneinsatz zu erbringen.Over the past two decades, humankind's reliance on global navigation satellite systems for precise positioning, navigation and timing services has grown remarkably. Such advanced applications vary from highly accurate surveying to intelligent transport systems, and from mobile network timing synchronization to weather and climate monitoring. This envisages new and higher standards of robustness, accuracy, coverage and integrity in modern navigation receivers. Recently, this has been accomplished with the incorporation of the multi-element navigation antenna receiver. However, the industrialization of this approach is limited due to the large antenna array size, hindered by the inter-element separation of half of the free-space wavelength, i.e. ≈ 10 cm at L band 1-2 GHz. In this thesis, compact navigation antenna arrays with smaller inter-element separations are proposed for the miniaturization of the overall size. However, these arrays become afflicted with the adverse effects of mutual coupling. Therefore, various figures-of-merit for the analysis and design of a compact planar navigation antenna array, such as performance diversity degrees-of-freedom, directional finding capabilities, and polarization purity, including mutual coupling effects, have been presented. This provides a general framework for the selection and configuration of the optimum compact navigation antenna array. In order to mitigate the mutual coupling, integration of the decoupling and matching network into customized compact navigation antenna array designs is performed. This is fostered by the correlated noise characterization of the complete receiver. Furthermore, an analytical model of the equivalent carrier-to-interference-plus-noise ratio is derived to investigate the navigation performance in interference scenarios. In the end, this is complemented by the implementation of the complete navigation receiver for verification and robustness validation of the derived compact antenna array concepts in indoor and outdoor interference scenarios
    corecore