36 research outputs found

    Bio-inspired robotic control in underactuation: principles for energy efficacy, dynamic compliance interactions and adaptability.

    Get PDF
    Biological systems achieve energy efficient and adaptive behaviours through extensive autologous and exogenous compliant interactions. Active dynamic compliances are created and enhanced from musculoskeletal system (joint-space) to external environment (task-space) amongst the underactuated motions. Underactuated systems with viscoelastic property are similar to these biological systems, in that their self-organisation and overall tasks must be achieved by coordinating the subsystems and dynamically interacting with the environment. One important question to raise is: How can we design control systems to achieve efficient locomotion, while adapt to dynamic conditions as the living systems do? In this thesis, a trajectory planning algorithm is developed for underactuated microrobotic systems with bio-inspired self-propulsion and viscoelastic property to achieve synchronized motion in an energy efficient, adaptive and analysable manner. The geometry of the state space of the systems is explicitly utilized, such that a synchronization of the generalized coordinates is achieved in terms of geometric relations along the desired motion trajectory. As a result, the internal dynamics complexity is sufficiently reduced, the dynamic couplings are explicitly characterised, and then the underactuated dynamics are projected onto a hyper-manifold. Following such a reduction and characterization, we arrive at mappings of system compliance and integrable second-order dynamics with the passive degrees of freedom. As such, the issue of trajectory planning is converted into convenient nonlinear geometric analysis and optimal trajectory parameterization. Solutions of the reduced dynamics and the geometric relations can be obtained through an optimal motion trajectory generator. Theoretical background of the proposed approach is presented with rigorous analysis and developed in detail for a particular example. Experimental studies are conducted to verify the effectiveness of the proposed method. Towards compliance interactions with the environment, accurate modelling or prediction of nonlinear friction forces is a nontrivial whilst challenging task. Frictional instabilities are typically required to be eliminated or compensated through efficiently designed controllers. In this work, a prediction and analysis framework is designed for the self-propelled vibro-driven system, whose locomotion greatly relies on the dynamic interactions with the nonlinear frictions. This thesis proposes a combined physics-based and analytical-based approach, in a manner that non-reversible characteristic for static friction, presliding as well as pure sliding regimes are revealed, and the frictional limit boundaries are identified. Nonlinear dynamic analysis and simulation results demonstrate good captions of experimentally observed frictional characteristics, quenching of friction-induced vibrations and satisfaction of energy requirements. The thesis also performs elaborative studies on trajectory tracking. Control schemes are designed and extended for a class of underactuated systems with concrete considerations on uncertainties and disturbances. They include a collocated partial feedback control scheme, and an adaptive variable structure control scheme with an elaborately designed auxiliary control variable. Generically, adaptive control schemes using neural networks are designed to ensure trajectory tracking. Theoretical background of these methods is presented with rigorous analysis and developed in detail for particular examples. The schemes promote the utilization of linear filters in the control input to improve the system robustness. Asymptotic stability and convergence of time-varying reference trajectories for the system dynamics are shown by means of Lyapunov synthesis

    Active compliance control strategies for multifingered robot hand

    Get PDF
    Safety issues have to be enhanced when the robot hand is grasping objects of different shapes, sizes and stiffness. The inability to control the grasping force and finger stiffness can lead to unsafe grasping environment. Although many researches have been conducted to resolve the grasping issues, particularly for the object with different shape, size and stiffness, the grasping control still requires further improvement. Hence, the primary aim of this work is to assess and improve the safety of the robot hand. One of the methods that allows a safe grasping is by employing an active compliance control via the force and impedance control. The implementation of force control considers the proportional–integral–derivative (PID) controller. Meanwhile, the implementation of impedance control employs the integral slidingmode controller (ISMC) and adaptive controller. A series of experiments and simulations is used to demonstrate the fundamental principles of robot grasping. Objects with different shape, size and stiffness are tested using a 3-Finger Adaptive Robot Gripper. The work introduces the Modbus remote terminal unit [RTU] protocol, a low-cost force sensor and the Arduino IO Package for a real-time hardware setup. It is found that, the results of the force control via PID controller are feasible to maintain the grasped object at certain positions, depending on the desired grasping force (i.e., 1N and 8N). Meanwhile, the implementation of impedance control via ISMC and adaptive controller yields multiple stiffness levels for the robot fingers and able to reduce collision between the fingers and the object. However, it was found that the adaptive controller produces better impedance control results as compared to the ISMC, with a 33% efficiency improvement. This work lays important foundations for long-term related research, particularly in the field of active compliance control that can be beneficial to human–robot interaction (HRI)

    Robust Control of Vectored Thrust Aerial Vehicles via Variable Structure Control Methods

    Full text link
    The popularity of Unmanned Aerial Vehicles (UAVs) has grown rapidly in many civil and military applications in the last few decades. Recent UAV applications include crop monitoring, terrain mapping and aerial photography, where one or several image sensors attached to the UAV provide important terrain information. A thrust vectoring aerial vehicle, a vehicle with the ability to change the direction of thrust generated while keeping the UAV body at a zero roll and pitch orientation, can serve well in such applications by allowing the sensors to capture stable image data without additional gimbals, reducing the payload and cost while increasing the flight endurance. Furthermore, thrust vectoring UAVs can perform fast forward flight as well as hover operations with non-zero pitch: features which can serve well in military applications. The first part of this research focuses on developing a comprehensive dynamic model and a low level attitude and position control structure for a tri-rotor UAV with thrust vectoring capability, namely the Vectored Thrust Aerial Vehicle. Nonlinear dynamics of UAVs require robust control methods to realize stable flight. Special attention needs to be given to wind gust disturbances, and parametric uncertainties. Sliding Mode Control , a type of Variable Structure Controller, has served well over the years in controlling UAVs and other dynamic systems. However, conventional Sliding Mode Control results in a high frequency switching behavior of the control signal. Furthermore, Sliding Mode Control does not focus on fast set-point regulation or tracking, which can be advantageous for UAVs and many other robotic systems. Taking these research gaps into account, this work presents an Adaptive Variable Structure Control method, which can acquire fast set-point regulation while maintaining robustness against external disturbances and uncertainties. The adaptive algorithm developed in this work is fundamentally different from current Adaptive Sliding Mode Control and other Variable Structure methods. Simulation and experimental results are provided to demonstrate the superiority of the proposed approach compared to Sliding Mode Control. The novel adaptive algorithm is applicable to many nonlinear dynamic systems including UAVs, robot arm manipulators and space robots. The same adaptive concept is then utilized to develop an Adaptive Second Order Sliding Mode Controller. Compared to existing Second Order Sliding Mode Control methods, the proposed methodology is able to produce reduced sliding manifold reach times and consume less amount of control resources: features which are particularly advantageous for systems with limited control resources. Simulations are conducted to evaluate the performance of the proposed Adaptive Second Order Sliding Mode Control algorithm

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Microgrids

    Get PDF
    Microgrids are a growing segment of the energy industry, representing a paradigm shift from centralized structures toward more localized, autonomous, dynamic, and bi-directional energy networks, especially in cities and communities. The ability to isolate from the larger grid makes microgrids resilient, while their capability of forming scalable energy clusters permits the delivery of services that make the grid more sustainable and competitive. Through an optimal design and management process, microgrids could also provide efficient, low-cost, clean energy and help to improve the operation and stability of regional energy systems. This book covers these promising and dynamic areas of research and development and gathers contributions on different aspects of microgrids in an aim to impart higher degrees of sustainability and resilience to energy systems

    Microgrids:The Path to Sustainability

    Get PDF

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems
    corecore