1,923 research outputs found

    Video foreground detection based on symmetric alpha-stable mixture models.

    Get PDF
    Background subtraction (BS) is an efficient technique for detecting moving objects in video sequences. A simple BS process involves building a model of the background and extracting regions of the foreground (moving objects) with the assumptions that the camera remains stationary and there exist no movements in the background. These assumptions restrict the applicability of BS methods to real-time object detection in video. In this paper, we propose an extended cluster BS technique with a mixture of symmetric alpha stable (SS) distributions. An on-line self-adaptive mechanism is presented that allows automated estimation of the model parameters using the log moment method. Results over real video sequences from indoor and outdoor environments, with data from static and moving video cameras are presented. The SS mixture model is shown to improve the detection performance compared with a cluster BS method using a Gaussian mixture model and the method of Li et al. [11]

    Tracking-Based Non-Parametric Background-Foreground Classification in a Chromaticity-Gradient Space

    Full text link
    This work presents a novel background-foreground classification technique based on adaptive non-parametric kernel estimation in a color-gradient space of components. By combining normalized color components with their gradients, shadows are efficiently suppressed from the results, while the luminance information in the moving objects is preserved. Moreover, a fast multi-region iterative tracking strategy applied over previously detected foreground regions allows to construct a robust foreground modeling, which combined with the background model increases noticeably the quality in the detections. The proposed strategy has been applied to different kind of sequences, obtaining satisfactory results in complex situations such as those given by dynamic backgrounds, illumination changes, shadows and multiple moving objects

    Full Reference Objective Quality Assessment for Reconstructed Background Images

    Full text link
    With an increased interest in applications that require a clean background image, such as video surveillance, object tracking, street view imaging and location-based services on web-based maps, multiple algorithms have been developed to reconstruct a background image from cluttered scenes. Traditionally, statistical measures and existing image quality techniques have been applied for evaluating the quality of the reconstructed background images. Though these quality assessment methods have been widely used in the past, their performance in evaluating the perceived quality of the reconstructed background image has not been verified. In this work, we discuss the shortcomings in existing metrics and propose a full reference Reconstructed Background image Quality Index (RBQI) that combines color and structural information at multiple scales using a probability summation model to predict the perceived quality in the reconstructed background image given a reference image. To compare the performance of the proposed quality index with existing image quality assessment measures, we construct two different datasets consisting of reconstructed background images and corresponding subjective scores. The quality assessment measures are evaluated by correlating their objective scores with human subjective ratings. The correlation results show that the proposed RBQI outperforms all the existing approaches. Additionally, the constructed datasets and the corresponding subjective scores provide a benchmark to evaluate the performance of future metrics that are developed to evaluate the perceived quality of reconstructed background images.Comment: Associated source code: https://github.com/ashrotre/RBQI, Associated Database: https://drive.google.com/drive/folders/1bg8YRPIBcxpKIF9BIPisULPBPcA5x-Bk?usp=sharing (Email for permissions at: ashrotreasuedu
    corecore