671 research outputs found

    A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients.

    Get PDF
    Background: Hemiparetic gait is characterized by strong asymmetries that can severely affect the quality of life of stroke survivors. This type of asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the nonparetic limb. In this study, we aimed to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and nonparetic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active knee–ankle–foot orthosis designed and developed to naturally assist the paretic limbs of hemiparetic patients during gait. Methods: REFLEX uses an adaptive frequency oscillator to estimate the continuous gait phase of the nonparetic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) replicating the movement of the nonparetic leg or (2) inducing a healthy gait pattern for the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. The effects of this assistance were evaluated in terms of interlimb symmetry with respect to spatiotemporal gait parameters such as step length or time, as well as the similarity between the joint’s motion in both legs. Results: Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease in the compensatory strategies developed by the nonparetic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the nonparetic limb. Conclusions: This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of a hemiparetic patient based on the movement of their nonparetic leg is a valuable strategy for reducing the compensatory mechanisms developed by the nonparetic limb.post-print6406 K

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    Towards a human-in-the-loop control for a smart orthotic system

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Stroke is the main cause of paralysis. This pathology has provoked a considerable increase of persons with motor impairments. With a therapy focused on each clinical case, the total or partial recovery can be achieved. Powered orthoses have been developed to promote an effective recover, based on repetitive gait training and user’s active participation. Many control approaches have been developed to control these devices, but none of them promotes an user-oriented strategy focused to the user’s needs. In an attempt of solving this issue, a new approach named Human-in-the-loop is emerging. This strategy allows the adaptation of some assistive parameters based on the user’s energetic cost, promoting a therapy tailored to each end-user needs. However, to estimate the energy expenditure, the use of non-ergonomic sensors, not suitable for clinical context, is required. Thus, it is necessary to find new ways of estimating energy expenditure using wearable and comfortable sensors. In this dissertation, the first steps to introduce the Human-in-the-loop strategy into a powered orthosis are presented. For this purpose, two strategies were developed: a strategy that allows the angular trajectory adaptation in real-time and other that promotes a stiffness adaptation all over the gait cycle. Both strategies were validated with healthy subjects. In the first strategy, the orthosis was able to modify its assistance in a fraction of microseconds, and the end-users were able to follow her with a median error below 10%. Regarding the second strategy, the results show that the orthosis allowed an effective change in the systems’ interaction stiffness, promoting an active participation of each user during its assistance. The energetic impact of using the robotic assistive device is also presented. As it promotes an energy expenditure augmentation in more than 30% in comparison to walk without the device, the necessity of implementing the Human-in-the-loop strategy was highlighted. In an attempt of finding an ergonomic technique to estimate the energetic cost, the use of machine learning algorithms was tested. The results, obtained with a MLP and a LSTM, prove that it is possible to estimate the energy expenditure with a mean error close to 11%. Future work consists in the implementation of the model in real-time and the collection of more data with the aforementioned control approaches, in a way of constructing a more robust model.O AVC é uma das maiores causas de paralisia. Esta patologia, cada vez mais com maior incidência nos jovens, tem provocado um aumento considerável de pessoas com problemas de mobilidade. Com uma terapia focada a cada caso clínico, a recuperação total ou parcial pode ser conseguida. As ortóteses ativas têm vindo a ser desenvolvidas com o propósito de promover uma recuperação eficaz, baseada em treinos repetitivos e numa participação ativa dos utilizadores. Várias abordagens de controlo têm vindo a ser desenvolvidas para controlar estes dispositivos, mas nenhuma delas promove uma estratégia orientada às necessidades do utilizador. Na tentativa de solucionar este problema, uma nova abordagem, designada por Human-in-the-loop está a emergir. Baseada no custo energético, esta estratégia permite adaptar parâmetros da assistência, promovendo uma terapia focada e direcionada a cada utilizador. No entanto, para estimar o custo energético, recorre-se ao uso de sensores que não são adequados para contexto clínico. Assim, torna-se necessário estudar novas formas de estimar o custo energético. Nesta dissertação são apresentados os primeiros passos para introduzir o controlo Human-in-the-loop numa ortótese ativa. Para isso, duas estratégias foram apresentadas: uma estratégia que permite adaptar a trajetória angular da ortótese, em tempo real, e outra que promove a adaptação da complacência do sistema ao longo do ciclo da marcha. Ambas foram validadas com sujeitos saudáveis. Relativamente à primeira abordagem, a ortótese foi capaz de modificar a sua assistência em microssegundos, e os utilizadores foram capazes de a seguir com um erro mediano inferior a 10%. No que diz respeito à segunda abordagem, os resultados mostram que a ortótese promoveu uma alteração eficaz da complacência de interação, promovendo uma participação ativa do utilizador durante a sua assistência. O impacto energético do uso do sistema robótico é, também, apresentado. Promovendo um aumento do custo energético em mais de 30%, a necessidade da estratégia Human-in-the-loop foi realçada. Na tentativa de encontrar uma técnica para estimar o custo energético, recorreu-se ao uso de machine learning. Os resultados, obtidos com uma MLP e uma LSTM, provam que é possível estimar o custo energético com um erro médio próximo dos 11%. Trabalho futuro passa pela implementação do modelo em tempo real e a recolha de mais dados com as abordagens de controlo apresentadas, de forma a construir um modelo mais robusto

    Joint Trajectory Generation and High-level Control for Patient-tailored Robotic Gait Rehabilitation

    Get PDF
    This dissertation presents a group of novel methods for robot-based gait rehabilitation which were developed aiming to offer more individualized therapies based on the specific condition of each patient, as well as to improve the overall rehabilitation experience for both patient and therapist. A novel methodology for gait pattern generation is proposed, which offers estimated hip and knee joint trajectories corresponding to healthy walking, and allows the therapist to graphically adapt the reference trajectories in order to fit better the patient's needs and disabilities. Additionally, the motion controllers for the hip and knee joints, mobile platform, and pelvic mechanism of an over-ground gait rehabilitation robotic system are also presented, as well as some proposed methods for assist as needed therapy. Two robot-patient synchronization approaches are also included in this work, together with a novel algorithm for online hip trajectory adaptation developed to reduce obstructive forces applied to the patient during therapy with compliant robotic systems. Finally, a prototype graphical user interface for the therapist is also presented

    Adapted assistance and resistance training with a knee exoskeleton after stroke

    Get PDF
    Studies on robotic interventions for gait rehabilitation after stroke require: (i) rigorous performance evidence; (ii) systematic procedures to tune the control parameters; and (iii) combination of control modes. In this study, we investigated how stroke individuals responded to training for two weeks with a knee exoskeleton (ABLE-KS) using both Assistance and Resistance training modes together with auditory feedback to train peak knee flexion angle. During the training, the torque provided by the ABLE-KS and the biofeedback were systematically adapted based on the subject’s performance and perceived exertion level. We carried out a comprehensive experimental analysis that evaluated a wide range of biomechanical metrics, together with usability and users’ perception metrics. We found significant improvements in peak knee flexion ( p=0.0016 ), minimum knee angle during stance ( p=0.0053 ), paretic single support time ( p=0.0087 ) and gait endurance ( p=0.022 ) when walking without the exoskeleton after the two weeks of training. Participants significantly ( p<0.00025 ) improved the knee angle during the stance and swing phases when walking with the exoskeleton powered in the high Assistance mode in comparison to the No Exo and the Unpowered conditions. No clinically relevant differences were found between Assistance and Resistance training sessions. Participants improved their performance with the exoskeleton (24-55 %) for the peak knee flexion angle throughout the training sessions. Moreover, participants showed a high level of acceptability of the ABLE-KS (QUEST 2.0 score: 4.5 ± 0.3 out of 5). Our preliminary findings suggest that the proposed training approach can produce similar or larger improvements in post-stroke individuals than other studies with knee exoskeletons that used higher training intensities.This work was supported in part by the Agency for Management of University and Research Grants (AGAUR) along with the Secretariat of Universities and Research of the Catalan Ministry of Research and Universities and the European Social Fund (ESF) under Grant 2020 FI_B 00331, in part by the Spanish Ministry of Science and Innovation (MCI)—Agencia Estatal de Investigación (AEI) under Grant PTQ2018-010227, in part by “La Caixa” Foundation under Grant LCF/TR/CC20/52480002, and in part by the Eurostars-3 Joint Program with co-financing from CDTI and the European Union’s Horizon Europe Research and Innovation Framework Program under Eureka Application Number 1789 under Grant CIIP-20221022Peer ReviewedPostprint (published version

    Towards Variable Assistance for Lower Body Exoskeletons

    Get PDF
    This letter presents and experimentally demonstrates a novel framework for variable assistance on lower body exoskeletons, based upon safety-critical control methods. Existing work has shown that providing some freedom of movement around a nominal gait, instead of rigidly following it, accelerates the spinal learning process of people with a walking impediment when using a lower body exoskeleton. With this as motivation, we present a method to accurately control how much a subject is allowed to deviate from a given gait while ensuring robustness to patient perturbation. This method leverages control barrier functions to force certain joints to remain inside predefined trajectory tubes in a minimally invasive way. The effectiveness of the method is demonstrated experimentally with able-bodied subjects and the Atalante lower body exoskeleton

    Oscillator-based assistance of cyclical movements: model-based and model-free approaches

    Get PDF
    In this article, we propose a new method for providing assistance during cyclical movements. This method is trajectory-free, in the sense that it provides user assistance irrespective of the performed movement, and requires no other sensing than the assisting robot's own encoders. The approach is based on adaptive oscillators, i.e., mathematical tools that are capable of learning the high level features (frequency, envelope, etc.) of a periodic input signal. Here we present two experiments that we recently conducted to validate our approach: a simple sinusoidal movement of the elbow, that we designed as a proof-of-concept, and a walking experiment. In both cases, we collected evidence illustrating that our approach indeed assisted healthy subjects during movement execution. Owing to the intrinsic periodicity of daily life movements involving the lower-limbs, we postulate that our approach holds promise for the design of innovative rehabilitation and assistance protocols for the lower-limb, requiring little to no user-specific calibratio

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201
    corecore