12,412 research outputs found

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    Quo Oxygen Sensor: Linear and Non-Linear Filtering Approaches to Noise Reduction

    Get PDF
    A system for measurement of oxygen consumption (V02) and determination of respiratory quotient (RQ: RQ = VO2/VCO2) is currently being developed by a joint project between Novametrix Inc. (Wallingford CT) and the University of Utah Department of BioEngineering. The system may prove to be highly useful on \u27extended duration space flight to monitor the metabolic rate of astronauts. The system employs a novel oxygen partial pressure sensor based on oxygen luminescence quenching technology for real-time measurement of respiratory oxygen concentration. This paper addresses the sensors\u27s signal vs. noise properties. The signal to noise (SIN) ratio of the sensor has been found to degrade progressively with increasing oxygen partial pressure (pO2) with the degradation appearing to become problematic at oxygen partial pressures above approximately 60%. In order to improve the (high pO2) SIN ratio of the sensor, a number of signal processing techniques were investigated. These techniques were selected based on a qualitative assessment of the sensor\u27s unique signal processing requirements and the effectiveness of the techniques was quantitatively characterized for comparison purposes. The techniques included linear as well as non-linear filtering strategies. The linear filtering strategies investigated consisted of two classes of notch filters while the more disparate non-linear filters consisted of classes of polynomial (Voltera series) filters, median and median-related filters, order statistic filters, morphological filters and weighted majority with minimum range filters. Each of the filters investigated were optimized using actual sensor data to improve sensor SIN ratio performance while maintaining adequate sensor dynamics. A number of candidate filters with varying degrees of computational complexity and noise suppression effectiveness are proposed for the sensor. Future studies will evaluate the performance of these filters within the framework of candidate oxygen consumption algorithms

    Partition based vector filtering technique for suppression of noise in digital color images

    Get PDF
    A partition-based adaptive vector filter is proposed for the restoration of corrupted digital color images. The novelty of the filter lies in its unique three-stage adaptive estimation. The local image structure is first estimated by a series of center-weighted reference filters. Then the distances between the observed central pixel and estimated references are utilized to classify the local inputs into one of preset structure partition cells. Finally, a weighted filtering operation, indexed by the partition cell, is applied to the estimated references in order to restore the central pixel value. The weighted filtering operation is optimized off-line for each partition cell to achieve the best tradeoff between noise suppression and structure preservation. Recursive filtering operation and recursive weight training are also investigated to further boost the restoration performance. The proposed filter has demonstrated satisfactory results in suppressing many distinct types of noise in natural color images. Noticeable performance gains are demonstrated over other prior-art methods in terms of standard objective measurements, the visual image quality and the computational complexity

    Optimum Median Filter Based on Crow Optimization Algorithm

    Get PDF
    يُقترح مرشح متوسط ​​جديد يعتمد على خوارزميات تحسين الغراب (OMF) لتقليل ضوضاء الملح والفلفل العشوائية وتحسين جودة الصور ذات اللون الرمادي والملونة . الفكرة الرئيسية لهذا النهج هي أن أولاً ، تقوم خوارزمية تحسين الأداء بالكشف عن وحدات البكسل الخاصة بالضوضاء ، واستبدالها بقيمة وسيطة مثالية تبعًا لدالة الأداء. أخيرًا ، تم استخدام نسبة القياس القصوى لنسبة الإشارة إلى الضوضاء (PSNR) ، والتشابه الهيكلي والخطأ المربع المطلق والخطأ التربيعي المتوسط ​​لاختبار أداء المرشحات المقترحة (المرشح الوسيط الأصلي والمحسّن) المستخدمة في الكشف عن الضوضاء وإزالتها من الصور. يحقق المحاكاة استنادًا إلى MATLAB R2019b والنتائج الحالية التي تفيد بأن المرشح المتوسط ​​المحسّن مع خوارزمية تحسين الغراب أكثر فعالية من خوارزمية المرشح المتوسط ​​الأصلية ومرشحات لطرق حديثة ؛ أنها تبين أن العملية المقترحة قوية للحد من مشكلة الخطأ وإزالة الضوضاء بسبب مرشح عامل التصفية المتوسط ​​؛ ستظهر النتائج عن طريق تقليل الخطأ التربيعي المتوسط ​​إلى أدنى أو أقل من (1.5) ، والخطأ المطلق للتساوي (0.22) ,والتشابه الهيكلي اكثر من ( 95%) والحصول على PSNR أكثر من 45dB).) وبنسبة تحسين ( 25%) .          A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the results present that the improved median filter with crow optimization algorithm is more effective than the original median filter algorithm and some recently methods; they show that the suggested process is robust to reduce the error problem and remove noise because of a candidate of the median filter; the results will show by the minimized mean square error to equal or less than (1.38), absolute error to equal or less than (0.22) ,Structural Similarity (SSIM) to equal (0.9856) and getting PSNR more than (46 dB). Thus, the percentage of improvement in work is (25%)

    HMM based scenario generation for an investment optimisation problem

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2012 Springer-Verlag.The Geometric Brownian motion (GBM) is a standard method for modelling financial time series. An important criticism of this method is that the parameters of the GBM are assumed to be constants; due to this fact, important features of the time series, like extreme behaviour or volatility clustering cannot be captured. We propose an approach by which the parameters of the GBM are able to switch between regimes, more precisely they are governed by a hidden Markov chain. Thus, we model the financial time series via a hidden Markov model (HMM) with a GBM in each state. Using this approach, we generate scenarios for a financial portfolio optimisation problem in which the portfolio CVaR is minimised. Numerical results are presented.This study was funded by NET ACE at OptiRisk Systems

    Rank-1 Constrained Multichannel Wiener Filter for Speech Recognition in Noisy Environments

    Get PDF
    Multichannel linear filters, such as the Multichannel Wiener Filter (MWF) and the Generalized Eigenvalue (GEV) beamformer are popular signal processing techniques which can improve speech recognition performance. In this paper, we present an experimental study on these linear filters in a specific speech recognition task, namely the CHiME-4 challenge, which features real recordings in multiple noisy environments. Specifically, the rank-1 MWF is employed for noise reduction and a new constant residual noise power constraint is derived which enhances the recognition performance. To fulfill the underlying rank-1 assumption, the speech covariance matrix is reconstructed based on eigenvectors or generalized eigenvectors. Then the rank-1 constrained MWF is evaluated with alternative multichannel linear filters under the same framework, which involves a Bidirectional Long Short-Term Memory (BLSTM) network for mask estimation. The proposed filter outperforms alternative ones, leading to a 40% relative Word Error Rate (WER) reduction compared with the baseline Weighted Delay and Sum (WDAS) beamformer on the real test set, and a 15% relative WER reduction compared with the GEV-BAN method. The results also suggest that the speech recognition accuracy correlates more with the Mel-frequency cepstral coefficients (MFCC) feature variance than with the noise reduction or the speech distortion level.Comment: for Computer Speech and Languag

    Partition-based vector filtering technique for suppression of noise in digital color images

    Get PDF
    Author name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information Engineering2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore