35 research outputs found

    An Almost Tight RMR Lower Bound for Abortable Test-And-Set

    Get PDF
    We prove a lower bound of Omega(log n/log log n) for the remote memory reference (RMR) complexity of abortable test-and-set (leader election) in the cache-coherent (CC) and the distributed shared memory (DSM) model. This separates the complexities of abortable and non-abortable test-and-set, as the latter has constant RMR complexity [Wojciech Golab et al., 2010]. Golab, Hendler, Hadzilacos and Woelfel [Wojciech M. Golab et al., 2012] showed that compare-and-swap can be implemented from registers and test-and-set objects with constant RMR complexity. We observe that a small modification to that implementation is abortable, provided that the used test-and-set objects are atomic (or abortable). As a consequence, using existing efficient randomized wait-free implementations of test-and-set [George Giakkoupis and Philipp Woelfel, 2012], we obtain randomized abortable compare-and-swap objects with almost constant (O(log^* n)) RMR complexity

    Recoverable, Abortable, and Adaptive Mutual Exclusion with Sublogarithmic RMR Complexity

    Get PDF
    We present the first recoverable mutual exclusion (RME) algorithm that is simultaneously abortable, adaptive to point contention, and with sublogarithmic RMR complexity. Our algorithm has O(min(K,log_W N)) RMR passage complexity and O(F + min(K,log_W N)) RMR super-passage complexity, where K is the number of concurrent processes (point contention), W is the size (in bits) of registers, and F is the number of crashes in a super-passage. Under the standard assumption that W = ?(log N), these bounds translate to worst-case O((log N)/(log log N)) passage complexity and O(F + (log N)/(log log N)) super-passage complexity. Our key building blocks are: - A D-process abortable RME algorithm, for D ? W, with O(1) passage complexity and O(1+F) super-passage complexity. We obtain this algorithm by using the Fetch-And-Add (FAA) primitive, unlike prior work on RME that uses Fetch-And-Store (FAS/SWAP). - A generic transformation that transforms any abortable RME algorithm with passage complexity of B < W, into an abortable RME lock with passage complexity of O(min(K,B))

    Constant-RMR Abortable Reader-Priority Reader-Writer Algorithm

    Get PDF
    The concurrent reader-writer problem (Courtois, 1971) involves two classes of processes: readers and writers, both of which wish to access a shared resource. Many readers can access the shared resource at the same time. However, if a writer is accessing the resource, no readers or other writers can access the resource at the same time. In the reader-priority version of the problem, readers are prioritized over writers when processes from both classes are trying to access the shared resource. Previous research (Bhatt, 2010) showed a reader-priority constant-RMR multi-reader, multi-writer algorithm for Cache-Coherent (CC) systems. However, this algorithm does not allow for readers or writers to abort, which allows readers and writers waiting for the resource to stop trying to access the resource and to quickly return to the Remainder Section of the code, where the process performs tasks unrelated to the shared resource. This thesis presents an abortable constant-RMR reader-priority multi-reader single-writer algorithm for CC systems. Additionally, we show how to generalize the algorithm into a multi-reader multi-writer algorithm using any given abortable mutual exclusion algorithm. The algorithm is proven rigorously by invariants and tested using a system of mathematical specification and model-checking tools (PlusCal/TLA+/TLC)

    Lock cohorting: A general technique for designing NUMA locks

    Get PDF
    Multicore machines are quickly shifting to NUMA and CC-NUMA architectures, making scalable NUMA-aware locking algorithms, ones that take into account the machines' non-uniform memory and caching hierarchy, ever more important. This paper presents lock cohorting, a general new technique for designing NUMA-aware locks that is as simple as it is powerful. Lock cohorting allows one to transform any spin-lock algorithm, with minimal non-intrusive changes, into scalable NUMA-aware spin-locks. Our new cohorting technique allows us to easily create NUMA-aware versions of the TATAS-Backoff, CLH, MCS, and ticket locks, to name a few. Moreover, it allows us to derive a CLH-based cohort abortable lock, the first NUMA-aware queue lock to support abortability. We empirically compared the performance of cohort locks with prior NUMA-aware and classic NUMA-oblivious locks on a synthetic micro-benchmark, a real world key-value store application memcached, as well as the libc memory allocator. Our results demonstrate that cohort locks perform as well or better than known locks when the load is low and significantly out-perform them as the load increases

    Looking for Efficient Implementations of Concurrent Objects

    Get PDF
    As introduced by Taubenfeld, a contention-sensitive implementation of a concurrent object is an implementation such that the overhead introduced by locking is eliminated in the common cases, i.e., when there is no contention or when the operations accessing concurrently the object are non-interfering. This paper, that can be considered as an introductory paper to this topic, presents a methodological construction of a contention-sensitive implementation of a concurrent stack. In a contention-free context a push or pop operation does not rest on a lock mechanism and needs only six accesses to the shared memory. In case of concurrency a single lock is required. Moreover, the implementation is starvation-free (any operation is eventually executed). The paper, that presents the algorithms in an incremental way, visits also a family of liveness conditions and important concurrency-related concepts such as the notion of an abortable object

    Constant RMR Group Mutual Exclusion for Arbitrarily Many Processes and Sessions

    Get PDF
    Group mutual exclusion (GME), introduced by Joung in 1998, is a natural synchronization problem that generalizes the classical mutual exclusion and readers and writers problems. In GME a process requests a session before entering its critical section; processes are allowed to be in their critical sections simultaneously provided they have requested the same session. We present a GME algorithm that (1) is the first to achieve a constant Remote Memory Reference (RMR) complexity for both cache coherent and distributed shared memory machines; and (2) is the first that can be accessed by arbitrarily many dynamically allocated processes and with arbitrarily many session names. Neither of the existing GME algorithms satisfies either of these two important properties. In addition, our algorithm has constant space complexity per process and satisfies the two strong fairness properties, first-come-first-served and first-in-first-enabled. Our algorithm uses an atomic instruction set supported by most modern processor architectures, namely: read, write, fetch-and-store and compare-and-swap

    The notion of Timed Registers and its application to Indulgent Synchronization

    Get PDF
    A new type of shared object, called timed register, is proposed and used to design indulgent timing-based algorithms.A timed register generalizes the notion of an atomic register as follows: if a process invokes two consecutive operations on the same timed register which are a read followed by a write, then the write operation is executed only if it is invoked at most d time units after the read operation, where d is defined as part of the read operation. In this context, a timing-based algorithm is an algorithm whose correctness relies on the existence of a bound Δ\Delta such that any pair of consecutive constrained read and write operations issued by the same process on the same timed register are separated by at most Δ\Delta time units. An indulgent algorithm is an algorithm that always guarantees the safety properties, and ensures the liveness property as soon as the timing assumptions are satisfied. The usefulness of this new type of shared object is demonstrated by presenting simple and elegant indulgent timing-based algorithms that solve the mutual exclusion, ℓ\ell-exclusion, adaptive renaming, test&set, and consensus problems. Interestingly, timed registers are universal objects in systems with process crashes and transient timing failures (i.e., they allow building any concurrent object with a sequential specification). The paper also suggests connections with schedulers and contention managers
    corecore