20,153 research outputs found

    Output consensus of nonlinear multi-agent systems with unknown control directions

    Get PDF
    In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaumtype control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure

    Distributed Adaptive Control for Nonlinear Heterogeneous Multi-agent Systems with Different Dimensions and Time Delay

    Get PDF
    A distributed neural network adaptive feedback control system is designed for a class of nonlinear multi-agent systems with time delay and nonidentical dimensions. In contrast to previous works on nonlinear heterogeneous multi-agent with the same dimension, particular features are proposed for each agent with different dimensions, and similar parameters are defined, which will be combined parameters of the controller. Second, a novel distributed control based on similarity parameters is proposed using linear matrix inequality (LMI) and Lyapunov stability theory, establishing that all signals in a closed loop system are eventually ultimately bounded. The consistency tracking error steadily decreases to a field with a small number of zeros. Finally, simulated examples with different time delays are utilized to test the effectiveness of the proposed control technique

    Distributed Adaptive Control for a Class of Heterogeneous Nonlinear Multi-Agent Systems with Nonidentical Dimensions

    Get PDF
    A novel feedback distributed adaptive control strategy based on radial basis neural network (RBFNN) is proposed for the consensus control of a class of leaderless heterogeneous nonlinear multi-agent systems with the same and different dimensions. The distributed control, which consists of a sequence of comparable matrices or vectors, can make that all the states of each agent to attain consensus dynamic behaviors are defined with similar parameters of each agent with nonidentical dimensions. The coupling weight adaptation laws and the feedback management of neural network weights ensure that all signals in the closed-loop system are uniformly ultimately bounded. Finally, two simulation examples are carried out to validate the effectiveness of the suggested control design strategy

    Modeling and Control of Multi-Agent Systems

    Get PDF
    Biology has brought much enlightenment to the development of human technology, for example, the collective behaviors inspired engineering applications (such as, the unmanned vehicle formation, the satellite alignment etc.), and even the study of network theory. This discipline has made a significant contribution to technology development. As a prospective solution to the current issues, multi-agent control has become a popular research topic in recent decades. The traditional control methods based on the classical models are suffering from high sensitivity to model accuracy, computational complexity, low fault tolerance, and weakness in real-time performance. Therefore, the advantages of multi-agent control are obvious: 1) easy maintenance and expansion of the system by repairing, replacing or adding agents; 2) high fault tolerance and robustness, ability to function properly even when some agents fail; 3) low requirement of distributed controllers, which brings low cost and large flexibility. In this thesis, I investigate problems on modeling and control of multi-agent systems. In particular, I propose a three-dimensional model to simulate collective behavior under high-speed conditions. I design an improved adaptive-velocity strategy and weighted strategy to enhance the performance of the multi-agent system. Moreover, I analyze the performance from the aspects of energy and parameter space. I show how the model works and its advantages compared to existing models. Then, I study the design of distributed controllers for multi-agent systems. Output regulation with input saturation and nonlinear flocking problems are studied with the assumption of a heterogeneous switching topology. The output regulation problem is solved via low gain state feedback and its validity verified by theoretical study. Then, the flocking problem with heterogeneous nonlinear dynamics is solved. A connectivity-preserving algorithm and potential function are designed to ensure the controllability of the multi-agent system through the dynamic process. Overall, this thesis provides examples of how to analyze and manipulate multi-agent systems. It offers promising solutions to solve physical multi-agent modeling and control problems and provides ideas for bio-inspired engineering and artificial intelligent control for multi-agent systems
    • ā€¦
    corecore