646 research outputs found

    Feature detection and description for image matching: from hand-crafted design to deep learning

    Get PDF
    In feature based image matching, distinctive features in images are detected and represented by feature descriptors. Matching is then carried out by assessing the similarity of the descriptors of potentially conjugate points. In this paper, we first shortly discuss the general framework. Then, we review feature detection as well as the determination of affine shape and orientation of local features, before analyzing feature description in more detail. In the feature description review, the general framework of local feature description is presented first. Then, the review discusses the evolution from hand-crafted feature descriptors, e.g. SIFT (Scale Invariant Feature Transform), to machine learning and deep learning based descriptors. The machine learning models, the training loss and the respective training data of learning-based algorithms are looked at in more detail; subsequently the various advantages and challenges of the different approaches are discussed. Finally, we present and assess some current research directions before concluding the paper

    Enhancing person annotation for personal photo management using content and context based technologies

    Get PDF
    Rapid technological growth and the decreasing cost of photo capture means that we are all taking more digital photographs than ever before. However, lack of technology for automatically organising personal photo archives has resulted in many users left with poorly annotated photos, causing them great frustration when such photo collections are to be browsed or searched at a later time. As a result, there has recently been significant research interest in technologies for supporting effective annotation. This thesis addresses an important sub-problem of the broad annotation problem, namely "person annotation" associated with personal digital photo management. Solutions to this problem are provided using content analysis tools in combination with context data within the experimental photo management framework, called “MediAssist”. Readily available image metadata, such as location and date/time, are captured from digital cameras with in-built GPS functionality, and thus provide knowledge about when and where the photos were taken. Such information is then used to identify the "real-world" events corresponding to certain activities in the photo capture process. The problem of enabling effective person annotation is formulated in such a way that both "within-event" and "cross-event" relationships of persons' appearances are captured. The research reported in the thesis is built upon a firm foundation of content-based analysis technologies, namely face detection, face recognition, and body-patch matching together with data fusion. Two annotation models are investigated in this thesis, namely progressive and non-progressive. The effectiveness of each model is evaluated against varying proportions of initial annotation, and the type of initial annotation based on individual and combined face, body-patch and person-context information sources. The results reported in the thesis strongly validate the use of multiple information sources for person annotation whilst emphasising the advantage of event-based photo analysis in real-life photo management systems

    Online Structured Learning for Real-Time Computer Vision Gaming Applications

    Get PDF
    In recent years computer vision has played an increasingly important role in the development of computer games, and it now features as one of the core technologies for many gaming platforms. The work in this thesis addresses three problems in real-time computer vision, all of which are motivated by their potential application to computer games. We rst present an approach for real-time 2D tracking of arbitrary objects. In common with recent research in this area we incorporate online learning to provide an appearance model which is able to adapt to the target object and its surrounding background during tracking. However, our approach moves beyond the standard framework of tracking using binary classication and instead integrates tracking and learning in a more principled way through the use of structured learning. As well as providing a more powerful framework for adaptive visual object tracking, our approach also outperforms state-of-the-art tracking algorithms on standard datasets. Next we consider the task of keypoint-based object tracking. We take the traditional pipeline of matching keypoints followed by geometric verication and show how this can be embedded into a structured learning framework in order to provide principled adaptivity to a given environment. We also propose an approximation method allowing us to take advantage of recently developed binary image descriptors, meaning our approach is suitable for real-time application even on low-powered portable devices. Experimentally, we clearly see the benet that online adaptation using structured learning can bring to this problem. Finally, we present an approach for approximately recovering the dense 3D structure of a scene which has been mapped by a simultaneous localisation and mapping system. Our approach is guided by the constraints of the low-powered portable hardware we are targeting, and we develop a system which coarsely models the scene using a small number of planes. To achieve this, we frame the task as a structured prediction problem and introduce online learning into our approach to provide adaptivity to a given scene. This allows us to use relatively simple multi-view information coupled with online learning of appearance to efficiently produce coarse reconstructions of a scene

    Computer vision based classification of fruits and vegetables for self-checkout at supermarkets

    Get PDF
    The field of machine learning, and, in particular, methods to improve the capability of machines to perform a wider variety of generalised tasks are among the most rapidly growing research areas in today’s world. The current applications of machine learning and artificial intelligence can be divided into many significant fields namely computer vision, data sciences, real time analytics and Natural Language Processing (NLP). All these applications are being used to help computer based systems to operate more usefully in everyday contexts. Computer vision research is currently active in a wide range of areas such as the development of autonomous vehicles, object recognition, Content Based Image Retrieval (CBIR), image segmentation and terrestrial analysis from space (i.e. crop estimation). Despite significant prior research, the area of object recognition still has many topics to be explored. This PhD thesis focuses on using advanced machine learning approaches to enable the automated recognition of fresh produce (i.e. fruits and vegetables) at supermarket self-checkouts. This type of complex classification task is one of the most recently emerging applications of advanced computer vision approaches and is a productive research topic in this field due to the limited means of representing the features and machine learning techniques for classification. Fruits and vegetables offer significant inter and intra class variance in weight, shape, size, colour and texture which makes the classification challenging. The applications of effective fruit and vegetable classification have significant importance in daily life e.g. crop estimation, fruit classification, robotic harvesting, fruit quality assessment, etc. One potential application for this fruit and vegetable classification capability is for supermarket self-checkouts. Increasingly, supermarkets are introducing self-checkouts in stores to make the checkout process easier and faster. However, there are a number of challenges with this as all goods cannot readily be sold with packaging and barcodes, for instance loose fresh items (e.g. fruits and vegetables). Adding barcodes to these types of items individually is impractical and pre-packaging limits the freedom of choice when selecting fruits and vegetables and creates additional waste, hence reducing customer satisfaction. The current situation, which relies on customers correctly identifying produce themselves leaves open the potential for incorrect billing either due to inadvertent error, or due to intentional fraudulent misclassification resulting in financial losses for the store. To address this identified problem, the main goals of this PhD work are: (a) exploring the types of visual and non-visual sensors that could be incorporated into a self-checkout system for classification of fruits and vegetables, (b) determining a suitable feature representation method for fresh produce items available at supermarkets, (c) identifying optimal machine learning techniques for classification within this context and (d) evaluating our work relative to the state-of-the-art object classification results presented in the literature. An in-depth analysis of related computer vision literature and techniques is performed to identify and implement the possible solutions. A progressive process distribution approach is used for this project where the task of computer vision based fruit and vegetables classification is divided into pre-processing and classification techniques. Different classification techniques have been implemented and evaluated as possible solution for this problem. Both visual and non-visual features of fruit and vegetables are exploited to perform the classification. Novel classification techniques have been carefully developed to deal with the complex and highly variant physical features of fruit and vegetables while taking advantages of both visual and non-visual features. The capability of classification techniques is tested in individual and ensemble manner to achieved the higher effectiveness. Significant results have been obtained where it can be concluded that the fruit and vegetables classification is complex task with many challenges involved. It is also observed that a larger dataset can better comprehend the complex variant features of fruit and vegetables. Complex multidimensional features can be extracted from the larger datasets to generalise on higher number of classes. However, development of a larger multiclass dataset is an expensive and time consuming process. The effectiveness of classification techniques can be significantly improved by subtracting the background occlusions and complexities. It is also worth mentioning that ensemble of simple and less complicated classification techniques can achieve effective results even if applied to less number of features for smaller number of classes. The combination of visual and nonvisual features can reduce the struggle of a classification technique to deal with higher number of classes with similar physical features. Classification of fruit and vegetables with similar physical features (i.e. colour and texture) needs careful estimation and hyper-dimensional embedding of visual features. Implementing rigorous classification penalties as loss function can achieve this goal at the cost of time and computational requirements. There is a significant need to develop larger datasets for different fruit and vegetables related computer vision applications. Considering more sophisticated loss function penalties and discriminative hyper-dimensional features embedding techniques can significantly improve the effectiveness of the classification techniques for the fruit and vegetables applications

    Vision-based retargeting for endoscopic navigation

    Get PDF
    Endoscopy is a standard procedure for visualising the human gastrointestinal tract. With the advances in biophotonics, imaging techniques such as narrow band imaging, confocal laser endomicroscopy, and optical coherence tomography can be combined with normal endoscopy for assisting the early diagnosis of diseases, such as cancer. In the past decade, optical biopsy has emerged to be an effective tool for tissue analysis, allowing in vivo and in situ assessment of pathological sites with real-time feature-enhanced microscopic images. However, the non-invasive nature of optical biopsy leads to an intra-examination retargeting problem, which is associated with the difficulty of re-localising a biopsied site consistently throughout the whole examination. In addition to intra-examination retargeting, retargeting of a pathological site is even more challenging across examinations, due to tissue deformation and changing tissue morphologies and appearances. The purpose of this thesis is to address both the intra- and inter-examination retargeting problems associated with optical biopsy. We propose a novel vision-based framework for intra-examination retargeting. The proposed framework is based on combining visual tracking and detection with online learning of the appearance of the biopsied site. Furthermore, a novel cascaded detection approach based on random forests and structured support vector machines is developed to achieve efficient retargeting. To cater for reliable inter-examination retargeting, the solution provided in this thesis is achieved by solving an image retrieval problem, for which an online scene association approach is proposed to summarise an endoscopic video collected in the first examination into distinctive scenes. A hashing-based approach is then used to learn the intrinsic representations of these scenes, such that retargeting can be achieved in subsequent examinations by retrieving the relevant images using the learnt representations. For performance evaluation of the proposed frameworks, extensive phantom, ex vivo and in vivo experiments have been conducted, with results demonstrating the robustness and potential clinical values of the methods proposed.Open Acces
    corecore