2,527 research outputs found

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Adapting robot task planning to user preferences: an assistive shoe dressing example

    Get PDF
    The final publication is available at link.springer.comHealthcare robots will be the next big advance in humans’ domestic welfare, with robots able to assist elderly people and users with disabilities. However, each user has his/her own preferences, needs and abilities. Therefore, robotic assistants will need to adapt to them, behaving accordingly. Towards this goal, we propose a method to perform behavior adaptation to the user preferences, using symbolic task planning. A user model is built from the user’s answers to simple questions with a fuzzy inference system, and it is then integrated into the planning domain. We describe an adaptation method based on both the user satisfaction and the execution outcome, depending on which penalizations are applied to the planner’s rules. We demonstrate the application of the adaptation method in a simple shoe-fitting scenario, with experiments performed in a simulated user environment. The results show quick behavior adaptation, even when the user behavior changes, as well as robustness to wrong inference of the initial user model. Finally, some insights in a non-simulated world shoe-fitting setup are also provided.Peer ReviewedPostprint (author's final draft

    Iterative Path Optimisation for Personalised Dressing Assistance using Vision and Force Information

    Get PDF
    We propose an online iterative path optimisation method to enable a Baxter humanoid robot to assist human users to dress. The robot searches for the optimal personalised dressing path using vision and force sensor information: vision information is used to recognise the human pose and model the movement space of upper-body joints; force sensor information is used for the robot to detect external force resistance and to locally adjust its motion. We propose a new stochastic path optimisation method based on adaptive moment estimation. We first compare the proposed method with other path optimisation algorithms on synthetic data. Experimental results show that the performance of the method achieves the smallest error with fewer iterations and less computation time. We also evaluate real-world data by enabling the Baxter robot to assist real human users with their dressing

    An emotion and memory model for social robots : a long-term interaction

    Get PDF
    In this thesis, we investigate the role of emotions and memory in social robotic companions. In particular, our aim is to study the effect of an emotion and memory model towards sustaining engagement and promoting learning in a long-term interaction. Our Emotion and Memory model was based on how humans create memory under various emotional events/states. The model enabled the robot to create a memory account of user's emotional events during a long-term child-robot interaction. The robot later adapted its behaviour through employing the developed memory in the following interactions with the users. The model also had an autonomous decision-making mechanism based on reinforcement learning to select behaviour according to the user preference measured through user's engagement and learning during the task. The model was implemented on the NAO robot in two different educational setups. Firstly, to promote user's vocabulary learning and secondly, to inform how to calculate area and perimeter of regular and irregular shapes. We also conducted multiple long-term evaluations of our model with children at the primary schools to verify its impact on their social engagement and learning. Our results showed that the behaviour generated based on our model was able to sustain social engagement. Additionally, it also helped children to improve their learning. Overall, the results highlighted the benefits of incorporating memory during child-Robot Interaction for extended periods of time. It promoted personalisation and reflected towards creating a child-robot social relationship in a long-term interaction

    Personalization framework for adaptive robotic feeding assistance

    Get PDF
    The final publication is available at link.springer.comThe deployment of robots at home must involve robots with pre-defined skills and the capability of personalizing their behavior by non-expert users. A framework to tackle this personalization is presented and applied to an automatic feeding task. The personalization involves the caregiver providing several examples of feeding using Learning-by- Demostration, and a ProMP formalism to compute an overall trajectory and the variance along the path. Experiments show the validity of the approach in generating different feeding motions to adapt to user’s preferences, automatically extracting the relevant task parameters. The importance of the nature of the demonstrations is also assessed, and two training strategies are compared. © Springer International Publishing AG 2016.Peer ReviewedPostprint (author's final draft

    Learning to Self-Manage by Intelligent Monitoring, Prediction and Intervention

    Get PDF
    Despite the growing prevalence of multimorbidities, current digital self-management approaches still prioritise single conditions. The future of out-of-hospital care requires researchers to expand their horizons; integrated assistive technologies should enable people to live their life well regardless of their chronic conditions. Yet, many of the current digital self-management technologies are not equipped to handle this problem. In this position paper, we suggest the solution for these issues is a model-aware and data-agnostic platform formed on the basis of a tailored self-management plan and three integral concepts - Monitoring (M) multiple information sources to empower Predictions (P) and trigger intelligent Interventions (I). Here we present our ideas for the formation of such a platform, and its potential impact on quality of life for sufferers of chronic conditions

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Robot education peers in a situated primary school study: personalisation promotes child learning

    Get PDF
    The benefit of social robots to support child learning in an educational context over an extended period of time is evaluated. Specifically, the effect of personalisation and adaptation of robot social behaviour is assessed. Two autonomous robots were embedded within two matched classrooms of a primary school for a continuous two week period without experimenter supervision to act as learning companions for the children for familiar and novel subjects. Results suggest that while children in both personalised and non-personalised conditions learned, there was increased child learning of a novel subject exhibited when interacting with a robot that personalised its behaviours, with indications that this benefit extended to other class-based performance. Additional evidence was obtained suggesting that there is increased acceptance of the personalised robot peer over a non-personalised version. These results provide the first evidence in support of peer-robot behavioural personalisation having a positive influence on learning when embedded in a learning environment for an extended period of time
    • 

    corecore