162 research outputs found

    Knee Joint Vibration Signal Analysis with Matching Pursuit Decomposition and Dynamic Weighted Classifier Fusion

    Get PDF
    Analysis of knee joint vibration (VAG) signals can provide quantitative indices for detection of knee joint pathology at an early stage. In addition to the statistical features developed in the related previous studies, we extracted two separable features, that is, the number of atoms derived from the wavelet matching pursuit decomposition and the number of significant signal turns detected with the fixed threshold in the time domain. To perform a better classification over the data set of 89 VAG signals, we applied a novel classifier fusion system based on the dynamic weighted fusion (DWF) method to ameliorate the classification performance. For comparison, a single leastsquares support vector machine (LS-SVM) and the Bagging ensemble were used for the classification task as well. The results in terms of overall accuracy in percentage and area under the receiver operating characteristic curve obtained with the DWF-based classifier fusion method reached 88.76% and 0.9515, respectively, which demonstrated the effectiveness and superiority of the DWF method with two distinct features for the VAG signal analysis

    EEG-Based Estimation of Human Reaction Time Corresponding to Change of Visual Event.

    Get PDF
    abstract: The human brain controls a person's actions and reactions. In this study, the main objective is to quantify reaction time towards a change of visual event and figuring out the inherent relationship between response time and corresponding brain activities. Furthermore, which parts of the human brain are responsible for the reaction time is also of interest. As electroencephalogram (EEG) signals are proportional to the change of brain functionalities with time, EEG signals from different locations of the brain are used as indicators of brain activities. As the different channels are from different parts of our brain, identifying most relevant channels can provide the idea of responsible brain locations. In this study, response time is estimated using EEG signal features from time, frequency and time-frequency domain. Regression-based estimation using the full data-set results in RMSE (Root Mean Square Error) of 99.5 milliseconds and a correlation value of 0.57. However, the addition of non-EEG features with the existing features gives RMSE of 101.7 ms and a correlation value of 0.58. Using the same analysis with a custom data-set provides RMSE of 135.7 milliseconds and a correlation value of 0.69. Classification-based estimation provides 79% & 72% of accuracy for binary and 3-class classication respectively. Classification of extremes (high-low) results in 95% of accuracy. Combining recursive feature elimination, tree-based feature importance, and mutual feature information method, important channels, and features are isolated based on the best result. As human response time is not solely dependent on brain activities, it requires additional information about the subject to improve the reaction time estimation.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Complexity penalized methods for structured and unstructured data

    Get PDF
    A fundamental goal of statisticians is to make inferences from the sample about characteristics of the underlying population. This is an inverse problem, since we are trying to recover a feature of the input with the availability of observations on an output. Towards this end, we consider complexity penalized methods, because they balance goodness of fit and generalizability of the solution. The data from the underlying population may come in diverse formats - structured or unstructured - such as probability distributions, text tokens, or graph characteristics. Depending on the defining features of the problem we can chose the appropriate complexity penalized approach, and assess the quality of the estimate produced by it. Favorable characteristics are strong theoretical guarantees of closeness to the true value and interpretability. Our work fits within this framework and spans the areas of simulation optimization, text mining and network inference. The first problem we consider is model calibration under the assumption that given a hypothesized input model, we can use stochastic simulation to obtain its corresponding output observations. We formulate it as a stochastic program by maximizing the entropy of the input distribution subject to moment matching. We then propose an iterative scheme via simulation to approximately solve it. We prove convergence of the proposed algorithm under appropriate conditions and demonstrate the performance via numerical studies. The second problem we consider is summarizing text documents through an inferred set of topics. We propose a frequentist reformulation of a Bayesian regularization scheme. Through our complexity-penalized perspective we lend further insight into the nature of the loss function and the regularization achieved through the priors in the Bayesian formulation. The third problem is concerned with the impact of sampling on the degree distribution of a network. Under many sampling designs, we have a linear inverse problem characterized by an ill-conditioned matrix. We investigate the theoretical properties of an approximate solution for the degree distribution found by regularizing the solution of the ill-conditioned least squares objective. Particularly, we study the rate at which the penalized solution tends to the true value as a function of network size and sampling rate

    Support vector machine in chaotic hydrological time series forecasting

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Holistic Learning for Multi-Target and Network Monitoring Problems

    Get PDF
    abstract: Technological advances have enabled the generation and collection of various data from complex systems, thus, creating ample opportunity to integrate knowledge in many decision making applications. This dissertation introduces holistic learning as the integration of a comprehensive set of relationships that are used towards the learning objective. The holistic view of the problem allows for richer learning from data and, thereby, improves decision making. The first topic of this dissertation is the prediction of several target attributes using a common set of predictor attributes. In a holistic learning approach, the relationships between target attributes are embedded into the learning algorithm created in this dissertation. Specifically, a novel tree based ensemble that leverages the relationships between target attributes towards constructing a diverse, yet strong, model is proposed. The method is justified through its connection to existing methods and experimental evaluations on synthetic and real data. The second topic pertains to monitoring complex systems that are modeled as networks. Such systems present a rich set of attributes and relationships for which holistic learning is important. In social networks, for example, in addition to friendship ties, various attributes concerning the users' gender, age, topic of messages, time of messages, etc. are collected. A restricted form of monitoring fails to take the relationships of multiple attributes into account, whereas the holistic view embeds such relationships in the monitoring methods. The focus is on the difficult task to detect a change that might only impact a small subset of the network and only occur in a sub-region of the high-dimensional space of the network attributes. One contribution is a monitoring algorithm based on a network statistical model. Another contribution is a transactional model that transforms the task into an expedient structure for machine learning, along with a generalizable algorithm to monitor the attributed network. A learning step in this algorithm adapts to changes that may only be local to sub-regions (with a broader potential for other learning tasks). Diagnostic tools to interpret the change are provided. This robust, generalizable, holistic monitoring method is elaborated on synthetic and real networks.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Graph-based techniques for compression and reconstruction of sparse sources

    Get PDF
    The main goal of this thesis is to develop lossless compression schemes for analog and binary sources. All the considered compression schemes have as common feature that the encoder can be represented by a graph, so they can be studied employing tools from modern coding theory. In particular, this thesis is focused on two compression problems: the group testing and the noiseless compressed sensing problems. Although both problems may seem unrelated, in the thesis they are shown to be very close. Furthermore, group testing has the same mathematical formulation as non-linear binary source compression schemes that use the OR operator. In this thesis, the similarities between these problems are exploited. The group testing problem is aimed at identifying the defective subjects of a population with as few tests as possible. Group testing schemes can be divided into two groups: adaptive and non-adaptive group testing schemes. The former schemes generate tests sequentially and exploit the partial decoding results to attempt to reduce the overall number of tests required to label all members of the population, whereas non-adaptive schemes perform all the test in parallel and attempt to label as many subjects as possible. Our contributions to the group testing problem are both theoretical and practical. We propose a novel adaptive scheme aimed to efficiently perform the testing process. Furthermore, we develop tools to predict the performance of both adaptive and non-adaptive schemes when the number of subjects to be tested is large. These tools allow to characterize the performance of adaptive and non-adaptive group testing schemes without simulating them. The goal of the noiseless compressed sensing problem is to retrieve a signal from its lineal projection version in a lower-dimensional space. This can be done only whenever the amount of null components of the original signal is large enough. Compressed sensing deals with the design of sampling schemes and reconstruction algorithms that manage to reconstruct the original signal vector with as few samples as possible. In this thesis we pose the compressed sensing problem within a probabilistic framework, as opposed to the classical compression sensing formulation. Recent results in the state of the art show that this approach is more efficient than the classical one. Our contributions to noiseless compressed sensing are both theoretical and practical. We deduce a necessary and sufficient matrix design condition to guarantee that the reconstruction is lossless. Regarding the design of practical schemes, we propose two novel reconstruction algorithms based on message passing over the sparse representation of the matrix, one of them with very low computational complexity.El objetivo principal de la tesis es el desarrollo de esquemas de compresión sin pérdidas para fuentes analógicas y binarias. Los esquemas analizados tienen en común la representación del compresor mediante un grafo; esto ha permitido emplear en su estudio las herramientas de codificación modernas. Más concretamente la tesis estudia dos problemas de compresión en particular: el diseño de experimentos de testeo comprimido de poblaciones (de sangre, de presencia de elementos contaminantes, secuenciado de ADN, etcétera) y el muestreo comprimido de señales reales en ausencia de ruido. A pesar de que a primera vista parezcan problemas totalmente diferentes, en la tesis mostramos que están muy relacionados. Adicionalmente, el problema de testeo comprimido de poblaciones tiene una formulación matemática idéntica a los códigos de compresión binarios no lineales basados en puertas OR. En la tesis se explotan las similitudes entre todos estos problemas. Existen dos aproximaciones al testeo de poblaciones: el testeo adaptativo y el no adaptativo. El primero realiza los test de forma secuencial y explota los resultados parciales de estos para intentar reducir el número total de test necesarios, mientras que el segundo hace todos los test en bloque e intenta extraer el máximo de datos posibles de los test. Nuestras contribuciones al problema de testeo comprimido han sido tanto teóricas como prácticas. Hemos propuesto un nuevo esquema adaptativo para realizar eficientemente el proceso de testeo. Además hemos desarrollado herramientas que permiten predecir el comportamiento tanto de los esquemas adaptativos como de los esquemas no adaptativos cuando el número de sujetos a testear es elevado. Estas herramientas permiten anticipar las prestaciones de los esquemas de testeo sin necesidad de simularlos. El objetivo del muestreo comprimido es recuperar una señal a partir de su proyección lineal en un espacio de menor dimensión. Esto sólo es posible si se asume que la señal original tiene muchas componentes que son cero. El problema versa sobre el diseño de matrices y algoritmos de reconstrucción que permitan implementar esquemas de muestreo y reconstrucción con un número mínimo de muestras. A diferencia de la formulación clásica de muestreo comprimido, en esta tesis se ha empleado un modelado probabilístico de la señal. Referencias recientes en la literatura demuestran que este enfoque permite conseguir esquemas de compresión y descompresión más eficientes. Nuestras contribuciones en el campo de muestreo comprimido de fuentes analógicas dispersas han sido también teóricas y prácticas. Por un lado, la deducción de la condición necesaria y suficiente que debe garantizar la matriz de muestreo para garantizar que se puede reconstruir unívocamente la secuencia de fuente. Por otro lado, hemos propuesto dos algoritmos, uno de ellos de baja complejidad computacional, que permiten reconstruir la señal original basados en paso de mensajes entre los nodos de la representación gráfica de la matriz de proyección.Postprint (published version

    Frequency-based microwave medical imaging techniques

    Get PDF
    corecore