2,229 research outputs found

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Outlier robust corner-preserving methods for reconstructing noisy images

    Full text link
    The ability to remove a large amount of noise and the ability to preserve most structure are desirable properties of an image smoother. Unfortunately, they usually seem to be at odds with each other; one can only improve one property at the cost of the other. By combining M-smoothing and least-squares-trimming, the TM-smoother is introduced as a means to unify corner-preserving properties and outlier robustness. To identify edge- and corner-preserving properties, a new theory based on differential geometry is developed. Further, robustness concepts are transferred to image processing. In two examples, the TM-smoother outperforms other corner-preserving smoothers. A software package containing both the TM- and the M-smoother can be downloaded from the Internet.Comment: Published at http://dx.doi.org/10.1214/009053606000001109 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    A new Edge Detector Based on Parametric Surface Model: Regression Surface Descriptor

    Full text link
    In this paper we present a new methodology for edge detection in digital images. The first originality of the proposed method is to consider image content as a parametric surface. Then, an original parametric local model of this surface representing image content is proposed. The few parameters involved in the proposed model are shown to be very sensitive to discontinuities in surface which correspond to edges in image content. This naturally leads to the design of an efficient edge detector. Moreover, a thorough analysis of the proposed model also allows us to explain how these parameters can be used to obtain edge descriptors such as orientations and curvatures. In practice, the proposed methodology offers two main advantages. First, it has high customization possibilities in order to be adjusted to a wide range of different problems, from coarse to fine scale edge detection. Second, it is very robust to blurring process and additive noise. Numerical results are presented to emphasis these properties and to confirm efficiency of the proposed method through a comparative study with other edge detectors.Comment: 21 pages, 13 figures and 2 table
    • …
    corecore