65 research outputs found

    Review of the State-of-the-Art on Adaptive Protection for Microgrids based on Communications

    Full text link
    The dominance of distributed energy resources in microgrids and the associated weather dependency require flexible protection. They include devices capable of adapting their protective settings as a reaction to (potential) changes in system state. Communication technologies have a key role in this system since the reactions of the adaptive devices shall be coordinated. This coordination imposes strict requirements: communications must be available and ultra-reliable with bounded latency in the order of milliseconds. This paper reviews the state-of-the-art in the field and provides a thorough analysis of the main related communication technologies and optimization techniques. We also present our perspective on the future of communication deployments in microgrids, indicating the viability of 5G wireless systems and multi-connectivity to enable adaptive protection.Comment: Accepted to IEEE Trans. on Industrial Informatic

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation

    Traveling wave-based protection scheme for inverter-dominated microgrid using mathematical morphology

    Get PDF
    Inverter-dominated microgrids impose significant challenges on the distribution network, as inverters are well known for their limited contribution to fault current, undermining the performance of traditional overcurrent protection schemes. This paper introduces a new protection scheme based on the initial current traveling wave utilizing an improved mathematical morphology (MM) technology, with simplified polarity detection and new logics introduced for meshed networks and feeders with single-end measurement. The proposed protection scheme provides ultrafast response and can be adapted to varied system operational modes, topologies, fault conditions, and load conditions. Only low-bandwidth communication is required to achieve high-speed operation and adequate discrimination level in meshed networks. Simulation in PSCAD/EMTDC verifies both the sensitivity and stability of the proposed protection scheme under different microgrid operational scenarios
    • …
    corecore