96 research outputs found

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    An energy-efficient distributed dynamic bandwidth allocation algorithm for Passive Optical Access Networks

    Get PDF
    The rapid deployment of passive optical access networks (PONs) increases the global energy consumption of networking infrastructure. This paper focuses on the minimization of energy consumption in Ethernet PONs (EPONs). We present an energy-efficient, distributed dynamic bandwidth allocation (DBA) algorithm able to power off the transmitter and receiver of an optical network unit (ONU) when there is no upstream or downstream traffic. Our main contribution is combining the advantages of a distributed DBA (namely, a smaller packet delay compared to centralized DBAs, due to less time being needed to allocate the transmission slot) with energy saving features (that come at a price of longer delays due to the longer queue waiting times when transmitters are switched off). The proposed algorithm analyzes the queue size of the ONUs in order to switch them to doze/sleep mode when there is no upstream/downstream traffic in the network, respectively. Our results show that we minimized the ONU energy consumption across a wide range of network loads while keeping delay bounded.Postprint (published version

    Fair bandwidth allocation algorithm for PONS based on network utility maximization

    Get PDF
    Network utility maximization (NUM) models have been successfully applied to address multiple resource- allocation problems in communication networks. This paper explores, for the first time to our knowledge, their application to modeling the bandwidth-allocation problem in passive optical networks (PONs) and long-reach PONs. Using the NUM model, we propose the FEx-DBA (fair excess-dynamic bandwidth allocation) algorithm, a new DBA scheme to allow a fair and efficient allocation of the upstream channel capacity. The NUM framework provides the mathematical support to formally define the fairness concept in the resource allocation and the guidelines to devise FEx-DBA. A simulation study is conducted, whereby FEx-DBA is compared to a state-of-the-art proposal. We show that FEx-DBA (i) provides bandwidth guarantees to the users according to the service level agreement (SLA) contracted and fairly distributes the excess bandwidths among them; (ii) has a stable response and fast convergence when traffic or SLAs change, avoiding the oscillations appearing in other proposals; (iii) improves average delay and jitter measures; and (iv) only depends on a reduced set of parameters, which can be easily tuned.This work has been funded by Spanish Ministry of Science and Innovation (TEC2014-53071-C3-2-P and TEC2015-71932-REDT)

    Investigation of the DBA Algorithm Design Space for EPONs

    Full text link

    Resource management research in ethernet passive optical networks

    Get PDF
    The last decades, we have witnessed different phenomenology in the telecommunications sector. One of them is the widespread use of the Internet, which has brought a sharp increase in traffic, forcing suppliers to continuously expand the capacity of networks. In the near future, Internet will be composed of long-range highspeed optical networks; a number of wireless networks at the edge; and, in between, several access technologies. Today one of the main problems of the Internet is the bottleneck in the access segment. To address this issue the Passive Optical Networks (PONs) are very likely to succeed, due to their simplicity, low-cost, and increased bandwidth. A PON is made up of fiber optic cabling and passive splitters and couplers that distribute an optical signal to connectors that terminate each fiber segment. Among the different PON technologies, the Ethernet-PON (EPON) is a great alternative to satisfy operator and user needs, due to its cost, flexibility and interoperability with other technologies. One of the most interesting challenges in such technologies relates to the scheduling and allocation of resources in the upstream (shared) channel, i.e., the resource management. The aim of this thesis is to study and evaluate current contributions and propose new efficient solutions to address the resource management issues mainly in EPON. Key issues in this context are future end-user needs, quality of service (QoS) support, energy-saving and optimized service provisioning for real-time and elastic flows. This thesis also identifies research opportunities, issue recommendations and proposes novel mechanisms associated with access networks based on optical fiber technologies.Postprint (published version

    Advanced Technique and Future Perspective for Next Generation Optical Fiber Communications

    Get PDF
    Optical fiber communication industry has gained unprecedented opportunities and achieved rapid progress in recent years. However, with the increase of data transmission volume and the enhancement of transmission demand, the optical communication field still needs to be upgraded to better meet the challenges in the future development. Artificial intelligence technology in optical communication and optical network is still in its infancy, but the existing achievements show great application potential. In the future, with the further development of artificial intelligence technology, AI algorithms combining channel characteristics and physical properties will shine in optical communication. This reprint introduces some recent advances in optical fiber communication and optical network, and provides alternative directions for the development of the next generation optical fiber communication technology
    corecore