6 research outputs found

    Glottal source parametrisation by multi-estimate fusion

    Get PDF
    Glottal source information has been proven useful in many applications such as speech synthesis, speaker characterisation, voice transformation and pathological speech diagnosis. However, currently no single algorithm can extract reliable glottal source estimates across a wide range of speech signals. This thesis describes an investigation into glottal source parametrisation, including studies, proposals and evaluations on glottal waveform extraction, glottal source modelling by Liljencrants-Fant (LF) model fitting and a new multi-estimate fusion framework. As one of the critical steps in voice source parametrisation, glottal waveform extraction techniques are reviewed. A performance study is carried out on three existing glottal inverse filtering approaches and results confirm that no single algorithm consistently outperforms others and provide a reliable and accurate estimate for different speech signals. The next step is modelling the extracted glottal flow. To more accurately estimate the glottal source parameters, a new time-domain LF-model fitting algorithm by extended Kalman filter is proposed. The algorithm is evaluated by comparing it with a standard time-domain method and a spectral approach. Results show the proposed fitting method is superior to existing fitting methods. To obtain accurate glottal source estimates for different speech signals, a multi-estimate (ME) fusion framework is proposed. In the framework different algorithms are applied in parallel to extract multiple sets of LF-model estimates which are then combined by quantitative data fusion. The ME fusion approach is implemented and tested in several ways. The novel fusion framework is shown to be able to give more reliable glottal LF-model estimates than any single algorithm

    Robust tracking of glottal LF-model parameters by multi-estimate fusion

    Get PDF
    A new approach to robust tracking of glottal LF-model parameters is presented. The approach does not rely on a new glottal source estimation algorithm, but instead introduces a new extensible multi-estimate fusion framework. Within this framework several existing algorithms are applied in parallel to extract glottal LF-model parameter estimates which are subsequently passed to quantitative data fusion procedures. The preliminary implementation of the fusion algorithm described here incorporates three glottal inverse filtering methods and one time-domain LF-model fitting algorithm. Experimental results for both synthetic and natural speech signals demonstrate the effectiveness of the fusion algorithm. The proposed method is flexible and can be easily extended for other speech processing applications such as speech synthesis, speaker identification and prosody analysis

    Doctor of Philosophy

    Get PDF
    dissertationHearing aids suffer from the problem of acoustic feedback that limits the gain provided by hearing aids. Moreover, the output sound quality of hearing aids may be compromised in the presence of background acoustic noise. Digital hearing aids use advanced signal processing to reduce acoustic feedback and background noise to improve the output sound quality. However, it is known that the output sound quality of digital hearing aids deteriorates as the hearing aid gain is increased. Furthermore, popular subband or transform domain digital signal processing in modern hearing aids introduces analysis-synthesis delays in the forward path. Long forward-path delays are not desirable because the processed sound combines with the unprocessed sound that arrives at the cochlea through the vent and changes the sound quality. In this dissertation, we employ a variable, frequency-dependent gain function that is lower at frequencies of the incoming signal where the information is perceptually insignificant. In addition, the method of this dissertation automatically identifies and suppresses residual acoustical feedback components at frequencies that have the potential to drive the system to instability. The suppressed frequency components are monitored and the suppression is removed when such frequencies no longer pose a threat to drive the hearing aid system into instability. Together, the method of this dissertation provides more stable gain over traditional methods by reducing acoustical coupling between the microphone and the loudspeaker of a hearing aid. In addition, the method of this dissertation performs necessary hearing aid signal processing with low-delay characteristics. The central idea for the low-delay hearing aid signal processing is a spectral gain shaping method (SGSM) that employs parallel parametric equalization (EQ) filters. Parameters of the parametric EQ filters and associated gain values are selected using a least-squares approach to obtain the desired spectral response. Finally, the method of this dissertation switches to a least-squares adaptation scheme with linear complexity at the onset of howling. The method adapts to the altered feedback path quickly and allows the patient to not lose perceivable information. The complexity of the least-squares estimate is reduced by reformulating the least-squares estimate into a Toeplitz system and solving it with a direct Toeplitz solver. The increase in stable gain over traditional methods and the output sound quality were evaluated with psychoacoustic experiments on normal-hearing listeners with speech and music signals. The results indicate that the method of this dissertation provides 8 to 12 dB more hearing aid gain than feedback cancelers with traditional fixed gain functions. Furthermore, experimental results obtained with real world hearing aid gain profiles indicate that the method of this dissertation provides less distortion in the output sound quality than classical feedback cancelers, enabling the use of more comfortable style hearing aids for patients with moderate to profound hearing loss. Extensive MATLAB simulations and subjective evaluations of the results indicate that the method of this dissertation exhibits much smaller forward-path delays with superior howling suppression capability

    Modeling of the glottal flow derivative waveform with application to speaker identification

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1997.Includes bibliographical references (p. 102-107).by Michael David Plumpe.M.S

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec
    corecore