28 research outputs found

    System characterization and reception techniques for two-dimensional optical storage

    Get PDF

    Equalization and detection for digital communication over nonlinear bandlimited satellite communication channels

    Get PDF
    This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical suboptimal MLSD receiver, requiring only a single receive filter, is evaluated

    Contributions to adaptive equalization and timing recovery for optical storage systems

    Get PDF
    no abstrac

    Development of Fuzzy System Based Channel Equalisers

    Get PDF
    Channel equalisers are used in digital communication receivers to mitigate the effects of inter symbol interference (ISI) and inter user interference in the form of co-channel interference (CCI) and adjacent channel interference (ACI) in the presence of additive white Gaussian noise (AWGN). An equaliser uses a large part of the computations involved in the receiver. Linear equalisers based on adaptive filtering techniques have long been used for this application. Recently, use of nonlinear signal processing techniques like artificial neural networks (ANN) and radial basis functions (RBF) have shown encouraging results in this application. This thesis presents the development of a nonlinear fuzzy system based equaliser for digital communication receivers. The fuzzy equaliser proposed in this thesis provides a parametric implementation of symbolby-symbol maximum a-posteriori probability (MAP) equaliser based on Bayes’s theory. This MAP equaliser is also called Bayesian equaliser. Its decision function uses an estimate of the noise free received vectors, also called channel states or channel centres. The fuzzy equaliser developed here can be implemented with lower computational complexity than the RBF implementation of the MAP equaliser by using scalar channel states instead of channel states. It also provides schemes for performance tradeoff with complexity and schemes for subset centre selection. Simulation studies presented in this thesis suggests that the fuzzy equaliser by using only 10%-20% of the Bayesian equaliser channel states can provide near optimal performance. Subsequently, this fuzzy equaliser is modified for CCI suppression and is termed fuzzy–CCI equaliser. The fuzzy–CCI equaliser provides a performance comparable to the MAP equaliser designed for channels corrupted with CCI. However the structure of this equaliser is similar to the MAP equaliser that treats CCI as AWGN. A decision feedback form of this equaliser which uses a subset of channel states based on the feedback state is derived. Simulation studies presented in this thesis demonstrate that the fuzzy–CCI equaliser can effectively remove CCI without much increase in computational complexity. This equaliser is also successful in removing interference from more than one CCI sources, where as the MAP equalisers treating CCI as AWGN fail. This fuzzy–CCI equaliser can be treated as a fuzzy equaliser with a preprocessor for CCI suppression, and the preprocessor can be removed under high signal to interference ratio condition

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Aeronautical engineering, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 823 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1984

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    Aeronautical Engineering: A cumulative index to the 1984 issues of the continuing bibliography

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(171) through NASA SP-7037(182) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes
    corecore