8,755 research outputs found

    Adaptive Variance for Changing Sparse-Reward Environments

    Full text link
    Robots that are trained to perform a task in a fixed environment often fail when facing unexpected changes to the environment due to a lack of exploration. We propose a principled way to adapt the policy for better exploration in changing sparse-reward environments. Unlike previous works which explicitly model environmental changes, we analyze the relationship between the value function and the optimal exploration for a Gaussian-parameterized policy and show that our theory leads to an effective strategy for adjusting the variance of the policy, enabling fast adapt to changes in a variety of sparse-reward environments.Comment: Accepted as a conference at International Conference on Robotics and Automation(ICRA) 201

    Policy Consolidation for Continual Reinforcement Learning

    Full text link
    We propose a method for tackling catastrophic forgetting in deep reinforcement learning that is \textit{agnostic} to the timescale of changes in the distribution of experiences, does not require knowledge of task boundaries, and can adapt in \textit{continuously} changing environments. In our \textit{policy consolidation} model, the policy network interacts with a cascade of hidden networks that simultaneously remember the agent's policy at a range of timescales and regularise the current policy by its own history, thereby improving its ability to learn without forgetting. We find that the model improves continual learning relative to baselines on a number of continuous control tasks in single-task, alternating two-task, and multi-agent competitive self-play settings.Comment: Accepted at ICML 201

    ANS: Adaptive Network Scaling for Deep Rectifier Reinforcement Learning Models

    Full text link
    This work provides a thorough study on how reward scaling can affect performance of deep reinforcement learning agents. In particular, we would like to answer the question that how does reward scaling affect non-saturating ReLU networks in RL? This question matters because ReLU is one of the most effective activation functions for deep learning models. We also propose an Adaptive Network Scaling framework to find a suitable scale of the rewards during learning for better performance. We conducted empirical studies to justify the solution

    Reinforcement Learning for Robotics and Control with Active Uncertainty Reduction

    Full text link
    Model-free reinforcement learning based methods such as Proximal Policy Optimization, or Q-learning typically require thousands of interactions with the environment to approximate the optimum controller which may not always be feasible in robotics due to safety and time consumption. Model-based methods such as PILCO or BlackDrops, while data-efficient, provide solutions with limited robustness and complexity. To address this tradeoff, we introduce active uncertainty reduction-based virtual environments, which are formed through limited trials conducted in the original environment. We provide an efficient method for uncertainty management, which is used as a metric for self-improvement by identification of the points with maximum expected improvement through adaptive sampling. Capturing the uncertainty also allows for better mimicking of the reward responses of the original system. Our approach enables the use of complex policy structures and reward functions through a unique combination of model-based and model-free methods, while still retaining the data efficiency. We demonstrate the validity of our method on several classic reinforcement learning problems in OpenAI gym. We prove that our approach offers a better modeling capacity for complex system dynamics as compared to established methods

    COBRA: Data-Efficient Model-Based RL through Unsupervised Object Discovery and Curiosity-Driven Exploration

    Full text link
    Data efficiency and robustness to task-irrelevant perturbations are long-standing challenges for deep reinforcement learning algorithms. Here we introduce a modular approach to addressing these challenges in a continuous control environment, without using hand-crafted or supervised information. Our Curious Object-Based seaRch Agent (COBRA) uses task-free intrinsically motivated exploration and unsupervised learning to build object-based models of its environment and action space. Subsequently, it can learn a variety of tasks through model-based search in very few steps and excel on structured hold-out tests of policy robustness

    Context-Dependent Upper-Confidence Bounds for Directed Exploration

    Full text link
    Directed exploration strategies for reinforcement learning are critical for learning an optimal policy in a minimal number of interactions with the environment. Many algorithms use optimism to direct exploration, either through visitation estimates or upper confidence bounds, as opposed to data-inefficient strategies like \epsilon-greedy that use random, undirected exploration. Most data-efficient exploration methods require significant computation, typically relying on a learned model to guide exploration. Least-squares methods have the potential to provide some of the data-efficiency benefits of model-based approaches -- because they summarize past interactions -- with the computation closer to that of model-free approaches. In this work, we provide a novel, computationally efficient, incremental exploration strategy, leveraging this property of least-squares temporal difference learning (LSTD). We derive upper confidence bounds on the action-values learned by LSTD, with context-dependent (or state-dependent) noise variance. Such context-dependent noise focuses exploration on a subset of variable states, and allows for reduced exploration in other states. We empirically demonstrate that our algorithm can converge more quickly than other incremental exploration strategies using confidence estimates on action-values.Comment: Neural Information Processing Systems 201

    Generative predecessor models for sample-efficient imitation learning

    Full text link
    We propose Generative Predecessor Models for Imitation Learning (GPRIL), a novel imitation learning algorithm that matches the state-action distribution to the distribution observed in expert demonstrations, using generative models to reason probabilistically about alternative histories of demonstrated states. We show that this approach allows an agent to learn robust policies using only a small number of expert demonstrations and self-supervised interactions with the environment. We derive this approach from first principles and compare it empirically to a state-of-the-art imitation learning method, showing that it outperforms or matches its performance on two simulated robot manipulation tasks and demonstrate significantly higher sample efficiency by applying the algorithm on a real robot

    Model-Based Stochastic Search for Large Scale Optimization of Multi-Agent UAV Swarms

    Full text link
    Recent work from the reinforcement learning community has shown that Evolution Strategies are a fast and scalable alternative to other reinforcement learning methods. In this paper we show that Evolution Strategies are a special case of model-based stochastic search methods. This class of algorithms has nice asymptotic convergence properties and known convergence rates. We show how these methods can be used to solve both cooperative and competitive multi-agent problems in an efficient manner. We demonstrate the effectiveness of this approach on two complex multi-agent UAV swarm combat scenarios: where a team of fixed wing aircraft must attack a well-defended base, and where two teams of agents go head to head to defeat each other.Comment: Video at http://goo.gl/dWvQi7 Code freely available at http://github.com/ddfan/swarm_evolv

    EX2: Exploration with Exemplar Models for Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning algorithms have been shown to learn complex tasks using highly general policy classes. However, sparse reward problems remain a significant challenge. Exploration methods based on novelty detection have been particularly successful in such settings but typically require generative or predictive models of the observations, which can be difficult to train when the observations are very high-dimensional and complex, as in the case of raw images. We propose a novelty detection algorithm for exploration that is based entirely on discriminatively trained exemplar models, where classifiers are trained to discriminate each visited state against all others. Intuitively, novel states are easier to distinguish against other states seen during training. We show that this kind of discriminative modeling corresponds to implicit density estimation, and that it can be combined with count-based exploration to produce competitive results on a range of popular benchmark tasks, including state-of-the-art results on challenging egocentric observations in the vizDoom benchmark

    Continuous Adaptation via Meta-Learning in Nonstationary and Competitive Environments

    Full text link
    Ability to continuously learn and adapt from limited experience in nonstationary environments is an important milestone on the path towards general intelligence. In this paper, we cast the problem of continuous adaptation into the learning-to-learn framework. We develop a simple gradient-based meta-learning algorithm suitable for adaptation in dynamically changing and adversarial scenarios. Additionally, we design a new multi-agent competitive environment, RoboSumo, and define iterated adaptation games for testing various aspects of continuous adaptation strategies. We demonstrate that meta-learning enables significantly more efficient adaptation than reactive baselines in the few-shot regime. Our experiments with a population of agents that learn and compete suggest that meta-learners are the fittest.Comment: Published as a conference paper at ICLR 201
    • …
    corecore