365 research outputs found

    Novel observers for compensation of communication delay in bilateral control systems

    Get PDF
    The problem of communication delay in bilateral or teleoperation systems is even more emphasized with the use of the internet for communication, which may give rise to loss of transparency and even instability. To address the problem, numerous methods have been proposed. This study is among the few recent studies taking a disturbance observer approach to the problem of time delay, and introduces a novel sliding-mode observer to overcome specifically the effects of communication delay in the feedback loop. The observer operates in combination with a PD+ controller which controls the system dynamics, while also compensating load torque uncertainties on the slave side. To this aim, an EKF based load estimation algorithm is performed on the slave side. The performance of this approach is tested with computer simulations for the teleoperation of a 1-DOF robotic arm. The simulations reveal an acceptable amount of accuracy and transparency between the estimated slave and actual slave position under both constant and random measurement delay and variable and step-type load variations on the slave side, motivating the use of the approach for internet-based bilateral control systems

    Experimental Evaluation of Novel Master-Slave Configurations for Position Control under Random Network Delay and Variable Load for Teleoperation

    Get PDF
    This paper proposes two novel master-slave configurations that provide improvements in both control and communication aspects of teleoperation systems to achieve an overall improved performance in position control. The proposed novel master-slave configurations integrate modular control and communication approaches, consisting of a delay regulator to address problems related to variable network delay common to such systems, and a model tracking control that runs on the slave side for the compensation of uncertainties and model mismatch on the slave side. One of the configurations uses a sliding mode observer and the other one uses a modified Smith predictor scheme on the master side to ensure position transparency between the master and slave, while reference tracking of the slave is ensured by a proportional-differentiator type controller in both configurations. Experiments conducted for the networked position control of a single-link arm under system uncertainties and randomly varying network delays demonstrate significant performance improvements with both configurations over the past literature

    Expert-in-the-Loop Multilateral Telerobotics for Haptics-Enabled Motor Function and Skills Development

    Get PDF
    Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy (RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on motor function development. Haptics-enabled expert-in-the-loop motor function development for such applications is made possible through multilateral telerobotic frameworks. While several studies have validated the benefits of haptic interaction with an expert in motor learning, contradictory results have also been reported. This emphasizes the need for further in-depth studies on the nature of human motor learning through haptic guidance and interaction. The objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic frameworks with stable and human-safe control loops that enable adaptive “hand-over-hand” haptic guidance for RAMRT and RAMIST. The first prerequisite for such frameworks is active involvement of the patient or trainee, which requires the closed-loop system to remain stable in the presence of an adaptable time-varying dominance factor. To this end, a wave-variable controller is proposed in this study for conventional trilateral teleoperation systems such that system stability is guaranteed in the presence of a time-varying dominance factor and communication delay. Similar to other wave-variable approaches, the controller is initially developed for the Velocity-force Domain (VD) based on the well-known passivity assumption on the human arm in VD. The controller can be applied straightforwardly to the Position-force Domain (PD), eliminating position-error accumulation and position drift, provided that passivity of the human arm in PD is addressed. However, the latter has been ignored in the literature. Therefore, in this study, passivity of the human arm in PD is investigated using mathematical analysis, experimentation as well as user studies involving 12 participants and 48 trials. The results, in conjunction with the proposed wave-variables, can be used to guarantee closed-loop PD stability of the supervised trilateral teleoperation system in its classical format. The classic dual-user teleoperation architecture does not, however, fully satisfy the requirements for properly imparting motor function (skills) in RAMRT (RAMIST). Consequently, the next part of this study focuses on designing novel supervised trilateral frameworks for providing motor learning in RAMRT and RAMIST, each customized according to the requirements of the application. The framework proposed for RAMRT includes the following features: a) therapist-in-the-loop mirror therapy; b) haptic feedback to the therapist from the patient side; c) assist-as-needed therapy realized through an adaptive Guidance Virtual Fixture (GVF); and d) real-time task-independent and patient-specific motor-function assessment. Closed-loop stability of the proposed framework is investigated using a combination of the Circle Criterion and the Small-Gain Theorem. The stability analysis addresses the instabilities caused by: a) communication delays between the therapist and the patient, facilitating haptics-enabled tele- or in-home rehabilitation; and b) the integration of the time-varying nonlinear GVF element into the delayed system. The platform is experimentally evaluated on a trilateral rehabilitation setup consisting of two Quanser rehabilitation robots and one Quanser HD2 robot. The framework proposed for RAMIST includes the following features: a) haptics-enabled expert-in-the-loop surgical training; b) adaptive expertise-oriented training, realized through a Fuzzy Interface System, which actively engages the trainees while providing them with appropriate skills-oriented levels of training; and c) task-independent skills assessment. Closed-loop stability of the architecture is analyzed using the Circle Criterion in the presence and absence of haptic feedback of tool-tissue interactions. In addition to the time-varying elements of the system, the stability analysis approach also addresses communication delays, facilitating tele-surgical training. The platform is implemented on a dual-console surgical setup consisting of the classic da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA), integrated with the da Vinci Research Kit (dVRK) motor controllers, and the dV-Trainer master console (Mimic Technology Inc., Seattle, WA). In order to save on the expert\u27s (therapist\u27s) time, dual-console architectures can also be expanded to accommodate simultaneous training (rehabilitation) for multiple trainees (patients). As the first step in doing this, the last part of this thesis focuses on the development of a multi-master/single-slave telerobotic framework, along with controller design and closed-loop stability analysis in the presence of communication delays. Various parts of this study are supported with a number of experimental implementations and evaluations. The outcomes of this research include multilateral telerobotic testbeds for further studies on the nature of human motor learning and retention through haptic guidance and interaction. They also enable investigation of the impact of communication time delays on supervised haptics-enabled motor function improvement through tele-rehabilitation and mentoring

    STABILITY AND PERFORMANCE OF NETWORKED CONTROL SYSTEMS

    Get PDF
    Network control systems (NCSs), as one of the most active research areas, are arousing comprehensive concerns along with the rapid development of network. This dissertation mainly discusses the stability and performance of NCSs into the following two parts. In the first part, a new approach is proposed to reduce the data transmitted in networked control systems (NCSs) via model reduction method. Up to our best knowledge, we are the first to propose this new approach in the scientific and engineering society. The "unimportant" information of system states vector is truncated by balanced truncation method (BTM) before sending to the networked controller via network based on the balance property of the remote controlled plant controllability and observability. Then, the exponential stability condition of the truncated NCSs is derived via linear matrix inequality (LMI) forms. This method of data truncation can usually reduce the time delay and further improve the performance of the NCSs. In addition, all the above results are extended to the switched NCSs. The second part presents a new robust sliding mode control (SMC) method for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties, to introduce adjustable parameters for control design along with the SMC method, and new Lyapunov-type functional. Then, a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems are derived via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1 by the proposed control rule. Furthermore, the novel Lyapunov-type functional for the uncertain stochastic systems is used to design a new robust control for the general case where the derivative of time-varying delay can be any bounded value (e.g., greater than one). It is theoretically proved that the conservatism of the proposed method is less than the previous methods. All theoretical proofs are presented in the dissertation. The simulations validate the correctness of the theoretical results and have better performance than the existing results

    Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism

    Get PDF
    Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation

    Neural Network-Based Control of Networked Trilateral Teleoperation With Geometrically Unknown Constraints

    Full text link

    An Adaptive Tool-Based Telerobot Control System

    Get PDF
    Modern telerobotics concepts seek to improve the work efficiency and quality of remote operations. The unstructured nature of typical remote operational environments makes autonomous operation of telerobotic systems difficult to achieve. Thus, human operators must always remain in the control loop for safety reasons. Remote operations involve tooling interactions with task environment. These interactions can be strong enough to promote unstable operation sometimes leading to system failures. Interestingly, manipulator/tooling dynamic interactions have not been studied in detail. This dissertation introduces a human-machine cooperative telerobotic (HMCTR) system architecture that has the ability to incorporate tooling interaction control and other computer assistance functions into the overall control system. A universal tooling interaction force prediction model has been created and implemented using grey system theory. Finally, a grey prediction force/position parallel fuzzy controller has been developed that compensates for the tooling interaction forces. Detailed experiments using a full-scale telerobotics testbed indicate: (i) the feasibility of the developed methodologies, and (ii) dramatic improvements in the stability of manipulator – based on band saw cutting operations. These results are foundational toward the further enhancement and development of telerobot

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    Learning Algorithm Design for Human-Robot Skill Transfer

    Get PDF
    In this research, we develop an intelligent learning scheme for performing human-robot skills transfer. Techniques adopted in the scheme include the Dynamic Movement Prim- itive (DMP) method with Dynamic Time Warping (DTW), Gaussian Mixture Model (G- MM) with Gaussian Mixture Regression (GMR) and the Radical Basis Function Neural Networks (RBFNNs). A series of experiments are conducted on a Baxter robot, a NAO robot and a KUKA iiwa robot to verify the effectiveness of the proposed design.During the design of the intelligent learning scheme, an online tracking system is de- veloped to control the arm and head movement of the NAO robot using a Kinect sensor. The NAO robot is a humanoid robot with 5 degrees of freedom (DOF) for each arm. The joint motions of the operator’s head and arm are captured by a Kinect V2 sensor, and this information is then transferred into the workspace via the forward and inverse kinematics. In addition, to improve the tracking performance, a Kalman filter is further employed to fuse motion signals from the operator sensed by the Kinect V2 sensor and a pair of MYO armbands, so as to teleoperate the Baxter robot. In this regard, a new strategy is developed using the vector approach to accomplish a specific motion capture task. For instance, the arm motion of the operator is captured by a Kinect sensor and programmed through a processing software. Two MYO armbands with embedded inertial measurement units are worn by the operator to aid the robots in detecting and replicating the operator’s arm movements. For this purpose, the armbands help to recognize and calculate the precise velocity of motion of the operator’s arm. Additionally, a neural network based adaptive controller is designed and implemented on the Baxter robot to illustrate the validation forthe teleoperation of the Baxter robot.Subsequently, an enhanced teaching interface has been developed for the robot using DMP and GMR. Motion signals are collected from a human demonstrator via the Kinect v2 sensor, and the data is sent to a remote PC for teleoperating the Baxter robot. At this stage, the DMP is utilized to model and generalize the movements. In order to learn from multiple demonstrations, DTW is used for the preprocessing of the data recorded on the robot platform, and GMM is employed for the evaluation of DMP to generate multiple patterns after the completion of the teaching process. Next, we apply the GMR algorithm to generate a synthesized trajectory to minimize position errors in the three dimensional (3D) space. This approach has been tested by performing tasks on a KUKA iiwa and a Baxter robot, respectively.Finally, an optimized DMP is added to the teaching interface. A character recombination technology based on DMP segmentation that uses verbal command has also been developed and incorporated in a Baxter robot platform. To imitate the recorded motion signals produced by the demonstrator, the operator trains the Baxter robot by physically guiding it to complete the given task. This is repeated five times, and the generated training data set is utilized via the playback system. Subsequently, the DTW is employed to preprocess the experimental data. For modelling and overall movement control, DMP is chosen. The GMM is used to generate multiple patterns after implementing the teaching process. Next, we employ the GMR algorithm to reduce position errors in the 3D space after a synthesized trajectory has been generated. The Baxter robot, remotely controlled by the user datagram protocol (UDP) in a PC, records and reproduces every trajectory. Additionally, Dragon Natural Speaking software is adopted to transcribe the voice data. This proposed approach has been verified by enabling the Baxter robot to perform a writing task of drawing robot has been taught to write only one character
    • …
    corecore