1,218 research outputs found

    Adaptive Tutorial Dialogue Systems Using Deep NLP Techniques

    Get PDF
    We present tutorial dialogue systems in two different domains that demonstrate the use of dialogue management and deep natural language processing techniques. Generation techniques are used to produce natural sounding feedback adapted to student performance and the dialogue history, and context is used to interpret tentative answers phrased as questions

    Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation

    Get PDF
    This paper surveys the current state of the art in Natural Language Generation (NLG), defined as the task of generating text or speech from non-linguistic input. A survey of NLG is timely in view of the changes that the field has undergone over the past decade or so, especially in relation to new (usually data-driven) methods, as well as new applications of NLG technology. This survey therefore aims to (a) give an up-to-date synthesis of research on the core tasks in NLG and the architectures adopted in which such tasks are organised; (b) highlight a number of relatively recent research topics that have arisen partly as a result of growing synergies between NLG and other areas of artificial intelligence; (c) draw attention to the challenges in NLG evaluation, relating them to similar challenges faced in other areas of Natural Language Processing, with an emphasis on different evaluation methods and the relationships between them.Comment: Published in Journal of AI Research (JAIR), volume 61, pp 75-170. 118 pages, 8 figures, 1 tabl

    Reinforcement Learning and Bandits for Speech and Language Processing: Tutorial, Review and Outlook

    Full text link
    In recent years, reinforcement learning and bandits have transformed a wide range of real-world applications including healthcare, finance, recommendation systems, robotics, and last but not least, the speech and natural language processing. While most speech and language applications of reinforcement learning algorithms are centered around improving the training of deep neural networks with its flexible optimization properties, there are still many grounds to explore to utilize the benefits of reinforcement learning, such as its reward-driven adaptability, state representations, temporal structures and generalizability. In this survey, we present an overview of recent advancements of reinforcement learning and bandits, and discuss how they can be effectively employed to solve speech and natural language processing problems with models that are adaptive, interactive and scalable.Comment: To appear in Expert Systems with Applications. Accompanying INTERSPEECH 2022 Tutorial on the same topic. Including latest advancements in large language models (LLMs

    Deeper Understanding of Tutorial Dialogues and Student Assessment

    Get PDF
    Bloom (1984) reported two standard deviation improvement with human tutoring which inspired many researchers to develop Intelligent Tutoring Systems (ITSs) that are as effective as human tutoring. However, recent studies suggest that the 2-sigma result was misleading and that current ITSs are as good as human tutors. Nevertheless, we can think of 2 standard deviations as the benchmark for tutoring effectiveness of ideal expert tutors. In the case of ITSs, there is still the possibility that ITSs could be better than humans.One way to improve the ITSs would be identifying, understanding, and then successfully implementing effective tutorial strategies that lead to learning gains. Another step towards improving the effectiveness of ITSs is an accurate assessment of student responses. However, evaluating student answers in tutorial dialogues is challenging. The student answers often refer to the entities in the previous dialogue turns and problem description. Therefore, the student answers should be evaluated by taking dialogue context into account. Moreover, the system should explain which parts of the student answer are correct and which are incorrect. Such explanation capability allows the ITSs to provide targeted feedback to help students reflect upon and correct their knowledge deficits. Furthermore, targeted feedback increases learners\u27 engagement, enabling them to persist in solving the instructional task at hand on their own. In this dissertation, we describe our approach to discover and understand effective tutorial strategies employed by effective human tutors while interacting with learners. We also present various approaches to automatically assess students\u27 contributions using general methods that we developed for semantic analysis of short texts. We explain our work using generic semantic similarity approaches to evaluate the semantic similarity between individual learner contributions and ideal answers provided by experts for target instructional tasks. We also describe our method to assess student performance based on tutorial dialogue context, accounting for linguistic phenomena such as ellipsis and pronouns. We then propose an approach to provide an explanatory capability for assessing student responses. Finally, we recommend a novel method based on concept maps for jointly evaluating and interpreting the correctness of student responses

    Advancement Auto-Assessment of Students Knowledge States from Natural Language Input

    Get PDF
    Knowledge Assessment is a key element in adaptive instructional systems and in particular in Intelligent Tutoring Systems because fully adaptive tutoring presupposes accurate assessment. However, this is a challenging research problem as numerous factors affect students’ knowledge state estimation such as the difficulty level of the problem, time spent in solving the problem, etc. In this research work, we tackle this research problem from three perspectives: assessing the prior knowledge of students, assessing the natural language short and long students’ responses, and knowledge tracing.Prior knowledge assessment is an important component of knowledge assessment as it facilitates the adaptation of the instruction from the very beginning, i.e., when the student starts interacting with the (computer) tutor. Grouping students into groups with similar mental models and patterns of prior level of knowledge allows the system to select the right level of scaffolding for each group of students. While not adapting instruction to each individual learner, the advantage of adapting to groups of students based on a limited number of prior knowledge levels has the advantage of decreasing the authoring costs of the tutoring system. To achieve this goal of identifying or clustering students based on their prior knowledge, we have employed effective clustering algorithms. Automatically assessing open-ended student responses is another challenging aspect of knowledge assessment in ITSs. In dialogue-based ITSs, the main interaction between the learner and the system is natural language dialogue in which students freely respond to various system prompts or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely generated student responses in such contexts is challenging as students can express the same idea in different ways owing to different individual style preferences and varied individual cognitive abilities. To address this challenging task, we have proposed several novel deep learning models as they are capable to capture rich high-level semantic features of text. Knowledge tracing (KT) is an important type of knowledge assessment which consists of tracking students’ mastery of knowledge over time and predicting their future performances. Despite the state-of-the-art results of deep learning in this task, it has many limitations. For instance, most of the proposed methods ignore pertinent information (e.g., Prior knowledge) that can enhance the knowledge tracing capability and performance. Working toward this objective, we have proposed a generic deep learning framework that accounts for the engagement level of students, the difficulty of questions and the semantics of the questions and uses a novel times series model called Temporal Convolutional Network for future performance prediction. The advanced auto-assessment methods presented in this dissertation should enable better ways to estimate learner’s knowledge states and in turn the adaptive scaffolding those systems can provide which in turn should lead to more effective tutoring and better learning gains for students. Furthermore, the proposed method should enable more scalable development and deployment of ITSs across topics and domains for the benefit of all learners of all ages and backgrounds
    • …
    corecore