4,311 research outputs found

    Noise adaptive training for subspace Gaussian mixture models

    Get PDF
    Noise adaptive training (NAT) is an effective approach to normalise the environmental distortions in the training data. This paper investigates the model-based NAT scheme using joint uncertainty decoding (JUD) for subspace Gaussian mixture models (SGMMs). A typical SGMM acoustic model has much larger number of surface Gaussian components, which makes it computationally infeasible to compensate each Gaussian explicitly. JUD tackles the problem by sharing the compensation parameters among the Gaussians and hence reduces the computational and memory demands. For noise adaptive training, JUD is reformulated into a generative model, which leads to an efficient expectation-maximisation (EM) based algorithm to update the SGMM acoustic model parameters. We evaluated the SGMMs with NAT on the Aurora 4 database, and obtained higher recognition accuracy compared to systems without adaptive training. Index Terms: adaptive training, noise robustness, joint uncertainty decoding, subspace Gaussian mixture model

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    Joint Uncertainty Decoding with Unscented Transform for Noise Robust Subspace Gaussian Mixture Models

    Get PDF
    Common noise compensation techniques use vector Taylor series (VTS) to approximate the mismatch function. Recent work shows that the approximation accuracy may be improved by sampling. One such sampling technique is the unscented transform (UT), which draws samples deterministically from clean speech and noise model to derive the noise corrupted speech parameters. This paper applies UT to noise compensation of the subspace Gaussian mixture model (SGMM). Since UT requires relatively smaller number of samples for accurate estimation, it has significantly lower computational cost compared to other random sampling techniques. However, the number of surface Gaussians in an SGMM is typically very large, making the direct application of UT, for compensating individual Gaussian components, computationally impractical. In this paper, we avoid the computational burden by employing UT in the framework of joint uncertainty decoding (JUD), which groups all the Gaussian components into small number of classes, sharing the compensation parameters by class. We evaluate the JUD-UT technique for an SGMM system using the Aurora 4 corpus. Experimental results indicate that UT can lead to increased accuracy compared to VTS approximation if the JUD phase factor is untuned, and to similar accuracy if the phase factor is tuned empirically. 1

    Modified SPLICE and its Extension to Non-Stereo Data for Noise Robust Speech Recognition

    Full text link
    In this paper, a modification to the training process of the popular SPLICE algorithm has been proposed for noise robust speech recognition. The modification is based on feature correlations, and enables this stereo-based algorithm to improve the performance in all noise conditions, especially in unseen cases. Further, the modified framework is extended to work for non-stereo datasets where clean and noisy training utterances, but not stereo counterparts, are required. Finally, an MLLR-based computationally efficient run-time noise adaptation method in SPLICE framework has been proposed. The modified SPLICE shows 8.6% absolute improvement over SPLICE in Test C of Aurora-2 database, and 2.93% overall. Non-stereo method shows 10.37% and 6.93% absolute improvements over Aurora-2 and Aurora-4 baseline models respectively. Run-time adaptation shows 9.89% absolute improvement in modified framework as compared to SPLICE for Test C, and 4.96% overall w.r.t. standard MLLR adaptation on HMMs.Comment: Submitted to Automatic Speech Recognition and Understanding (ASRU) 2013 Worksho

    ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ DNN ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€๋‚จ์ˆ˜.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•ด์„œ DNN์„ ํ™œ์šฉํ•œ ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํฌ๊ฒŒ ์„ธ ๊ฐ€์ง€์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” DNN์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ์žก์Œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ๊ฐ•์ธํ•จ์„ ๋ณด์กฐ ํŠน์ง• ๋ฒกํ„ฐ๋“ค์„ ํ†ตํ•˜์—ฌ ์ตœ๋Œ€๋กœ ํ™œ์šฉํ•˜๋Š” ์Œํ–ฅ ๋ชจ๋ธ๋ง ๊ธฐ๋ฒ•์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ DNN์€ ์™œ๊ณก๋œ ์Œ์„ฑ, ๊นจ๋—ํ•œ ์Œ์„ฑ, ์žก์Œ ์ถ”์ •์น˜, ๊ทธ๋ฆฌ๊ณ  ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๋ณต์žกํ•œ ๊ด€๊ณ„๋ฅผ ๋ณด๋‹ค ์›ํ™œํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๊ธฐ๋ฒ•์€ Aurora-5 DB ์—์„œ ๊ธฐ์กด์˜ ๋ณด์กฐ ์žก์Œ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๋ชจ๋ธ ์ ์‘ ๊ธฐ๋ฒ•์ธ ์žก์Œ ์ธ์ง€ ํ•™์Šต (noise-aware training, NAT) ๊ธฐ๋ฒ•์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” DNN์„ ํ™œ์šฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์ด๋‹ค. ๊ธฐ์กด์˜ ๋‹ค ์ฑ„๋„ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ๋Š” ์ „ํ†ต์ ์ธ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์ธ ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ํ–ฅ์ƒ๋œ ๋‹จ์ผ ์†Œ์Šค ์Œ์„ฑ ์‹ ํ˜ธ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๊ทธ๋ฅผ ํ†ตํ•˜์—ฌ ์Œ์„ฑ์ธ์‹์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ธฐ์กด์˜ ๋น”ํฌ๋ฐ ์ค‘์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์  ๊ธฐ๋ฒ• ์ค‘ ํ•˜๋‚˜์ธ delay-and-sum (DS) ๋น”ํฌ๋ฐ ๊ธฐ๋ฒ•๊ณผ DNN์„ ๊ฒฐํ•ฉํ•œ ๋‹ค ์ฑ„๋„ ํŠน์ง• ํ–ฅ์ƒ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” DNN์€ ์ค‘๊ฐ„ ๋‹จ๊ณ„ ํŠน์ง• ๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ๊ณต๋™ ํ•™์Šต ๊ธฐ๋ฒ•์„ ํ†ตํ•˜์—ฌ ์™œ๊ณก๋œ ๋‹ค ์ฑ„๋„ ์ž…๋ ฅ ์Œ์„ฑ ์‹ ํ˜ธ๋“ค๊ณผ ๊นจ๋—ํ•œ ์Œ์„ฑ ์‹ ํ˜ธ์™€์˜ ๊ด€๊ณ„๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ multichannel wall street journal audio visual (MC-WSJAV) corpus์—์„œ์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ, ๊ธฐ์กด์˜ ๋‹ค์ฑ„๋„ ํ–ฅ์ƒ ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ถˆํ™•์ •์„ฑ ์ธ์ง€ ํ•™์Šต (Uncertainty-aware training, UAT) ๊ธฐ๋ฒ•์ด๋‹ค. ์œ„์—์„œ ์†Œ๊ฐœ๋œ ๊ธฐ๋ฒ•๋“ค์„ ํฌํ•จํ•˜์—ฌ ๊ฐ•์ธํ•œ ์Œ์„ฑ์ธ์‹์„ ์œ„ํ•œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์€ ๊ฐ๊ฐ์˜ ๋„คํŠธ์›Œํฌ์˜ ํƒ€๊ฒŸ์„ ์ถ”์ •ํ•˜๋Š”๋ฐ ์žˆ์–ด์„œ ๊ฒฐ์ •๋ก ์ ์ธ ์ถ”์ • ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•œ๋‹ค. ์ด๋Š” ์ถ”์ •์น˜์˜ ๋ถˆํ™•์ •์„ฑ ๋ฌธ์ œ ํ˜น์€ ์‹ ๋ขฐ๋„ ๋ฌธ์ œ๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” UAT ๊ธฐ๋ฒ•์€ ํ™•๋ฅ ๋ก ์ ์ธ ๋ณ€ํ™” ์ถ”์ •์„ ํ•™์Šตํ•˜๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ์ธ ๋ณ€ํ™” ์˜คํ† ์ธ์ฝ”๋” (variational autoencoder, VAE) ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ๋‹ค. UAT๋Š” ์™œ๊ณก๋œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ์™€ ์Œ์†Œ ํƒ€๊ฒŸ๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ๋งค๊ฐœํ•˜๋Š” ๊ฐ•์ธํ•œ ์€๋‹‰ ๋ณ€์ˆ˜๋ฅผ ๊นจ๋—ํ•œ ์Œ์„ฑ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ •์น˜์˜ ๋ถ„ํฌ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค. UAT์˜ ์€๋‹‰ ๋ณ€์ˆ˜๋“ค์€ ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์Œํ–ฅ ๋ชจ๋ธ์— ์ตœ์ ํ™”๋œ uncertainty decoding (UD) ํ”„๋ ˆ์ž„์›Œํฌ๋กœ๋ถ€ํ„ฐ ์œ ๋„๋œ ์ตœ๋Œ€ ์šฐ๋„ ๊ธฐ์ค€์— ๋”ฐ๋ผ์„œ ํ•™์Šต๋œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ Aurora-4 DB์™€ CHiME-4 DB์—์„œ ๊ธฐ์กด์˜ DNN ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•๋“ค์„ ํฌ๊ฒŒ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค.In this thesis, we propose three acoustic modeling techniques for robust automatic speech recognition (ASR). Firstly, we propose a DNN-based acoustic modeling technique which makes the best use of the inherent noise-robustness of DNN is proposed. By applying this technique, the DNN can automatically learn the complicated relationship among the noisy, clean speech and noise estimate to phonetic target smoothly. The proposed method outperformed noise-aware training (NAT), i.e., the conventional auxiliary-feature-based model adaptation technique in Aurora-5 DB. The second method is multi-channel feature enhancement technique. In the general multi-channel speech recognition scenario, the enhanced single speech signal source is extracted from the multiple inputs using beamforming, i.e., the conventional signal-processing-based technique and the speech recognition process is performed by feeding that source into the acoustic model. We propose the multi-channel feature enhancement DNN algorithm by properly combining the delay-and-sum (DS) beamformer, which is one of the conventional beamforming techniques and DNN. Through the experiments using multichannel wall street journal audio visual (MC-WSJ-AV) corpus, it has been shown that the proposed method outperformed the conventional multi-channel feature enhancement techniques. Finally, uncertainty-aware training (UAT) technique is proposed. The most of the existing DNN-based techniques including the techniques introduced above, aim to optimize the point estimates of the targets (e.g., clean features, and acoustic model parameters). This tampers with the reliability of the estimates. In order to overcome this issue, UAT employs a modified structure of variational autoencoder (VAE), a neural network model which learns and performs stochastic variational inference (VIF). UAT models the robust latent variables which intervene the mapping between the noisy observed features and the phonetic target using the distributive information of the clean feature estimates. The proposed technique outperforms the conventional DNN-based techniques on Aurora-4 and CHiME-4 databases.Abstract i Contents iv List of Figures ix List of Tables xiii 1 Introduction 1 2 Background 9 2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Experimental Database . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Aurora-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Aurora-5 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 MC-WSJ-AV DB . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 CHiME-4 DB . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Two-stage Noise-aware Training for Environment-robust Speech Recognition 25 iii 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Noise-aware Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Two-stage NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.2 Upper DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.3 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1 GMM-HMM System . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.2 Training and Structures of DNN-based Techniques . . . . . . 37 3.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 40 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 DNN-based Feature Enhancement for Robust Multichannel Speech Recognition 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Observation Model in Multi-Channel Reverberant Noisy Environment 49 4.3 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Lower DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.2 Upper DNN and Joint Training . . . . . . . . . . . . . . . . . 54 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Recognition System and Feature Extraction . . . . . . . . . . 56 4.4.2 Training and Structures of DNN-based Techniques . . . . . . 58 4.4.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 62 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 iv 5 Uncertainty-aware Training for DNN-HMM System using Varia- tional Inference 67 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Uncertainty Decoding for Noise Robustness . . . . . . . . . . . . . . 72 5.3 Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4 VIF-based uncertainty-aware Training . . . . . . . . . . . . . . . . . 83 5.4.1 Clean Uncertainty Network . . . . . . . . . . . . . . . . . . . 91 5.4.2 Environment Uncertainty Network . . . . . . . . . . . . . . . 93 5.4.3 Prediction Network and Joint Training . . . . . . . . . . . . . 95 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.5.1 Experimental Setup: Feature Extraction and ASR System . . 96 5.5.2 Network Structures . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.3 Eects of CUN on the Noise Robustness . . . . . . . . . . . . 104 5.5.4 Uncertainty Representation in Dierent SNR Condition . . . 105 5.5.5 Result of Speech Recognition . . . . . . . . . . . . . . . . . . 112 5.5.6 Result of Speech Recognition with LSTM-HMM . . . . . . . 114 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 Conclusions 127 Bibliography 131 ์š”์•ฝ 145Docto

    Robust speech recognition based on a Bayesian prediction approach

    Get PDF
    We study a category of robust speech recognition problem in which mismatches exist between training and testing conditions, and no accurate knowledge of the mismatch mechanism is available. The only available information is the test data along with a set of pretrained Gaussian mixture continuous density hidden Markov models (CDHMMs). We investigate the problem from the viewpoint of Bayesian prediction. A simple prior distribution, namely constrained uniform distribution, is adopted to characterize the uncertainty of the mean vectors of the CDHMMs. Two methods, namely a model compensation technique based on Bayesian predictive density and a robust decision strategy called Viterbi Bayesian predictive classification are studied. The proposed methods are compared with the conventional Viterbi decoding algorithm in speaker-independent recognition experiments on isolated digits and TI connected digit strings (TIDTGITS), where the mismatches between training and testing conditions are caused by: (1) additive Gaussian white noise, (2) each of 25 types of actual additive ambient noises, and (3) gender difference. The experimental results show that the adopted prior distribution and the proposed techniques help to improve the performance robustness under the examined mismatch conditions.published_or_final_versio
    • โ€ฆ
    corecore