4,531 research outputs found

    Dynamic Generation of Investment Recommendations Using Grammatical Evolution

    Get PDF
    The attainment of trading rules using Grammatical Evolution traditionally follows a static approach. A single rule is obtained and then used to generate investment recommendations over time. The main disadvantage of this approach is that it does not consider the need to adapt to the structural changes that are often associated with financial time series. We improve the canonical approach introducing an alternative that involves a dynamic selection mechanism that switches between an active rule and a candidate one optimized for the most recent market data available. The proposed solution seeks the flexibility required by structural changes while limiting the transaction costs commonly associated with constant model updates. The performance of the algorithm is compared with four alternatives: the standard static approach; a sliding window-based generation of trading rules that are used for a single time period, and two ensemble-based strategies. The experimental results, based on market data, show that the suggested approach beats the rest

    Dynamic generation of investment recommendations using grammatical evolution

    Get PDF
    The attainment of trading rules using Grammatical Evolution traditionally follows a static approach. A single rule is obtained and then used to generate investment recommendations over time. The main disadvantage of this approach is that it does not consider the need to adapt to the structural changes that are often associated with financial time series. We improve the canonical approach introducing an alternative that involves a dynamic selection mechanism that switches between an active rule and a candidate one optimized for the most recent market data available. The proposed solution seeks the flexibility required by structural changes while limiting the transaction costs commonly associated with constant model updates. The performance of the algorithm is compared with four alternatives: the standard static approach; a sliding window-based generation of trading rules that are used for a single time period, and two ensemble-based strategies. The experimental results, based on market data, show that the suggested approach beats the rest.The authors would like to acknowledge the financial support of the Spanish Ministry of Science, Innovation and Universities under grant PGC2018-096849-B-I00 (MCFin). This work has been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3MXX), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    Grammatical evolution-based ensembles for algorithmic trading

    Get PDF
    The literature on trading algorithms based on Grammatical Evolution commonly presents solutions that rely on static approaches. Given the prevalence of structural change in financial time series, that implies that the rules might have to be updated at predefined time intervals. We introduce an alternative solution based on an ensemble of models which are trained using a sliding window. The structure of the ensemble combines the flexibility required to adapt to structural changes with the need to control for the excessive transaction costs associated with over-trading. The performance of the algorithm is benchmarked against five different comparable strategies that include the traditional static approach, the generation of trading rules that are used for single time period and are subsequently discarded, and three alternatives based on ensembles with different voting schemes. The experimental results, based on market data, show that the suggested approach offers very competitive results against comparable solutions and highlight the importance of containing transaction costs.The authors would like to acknowledge the nancial support of the Spanish Ministry of Science, Innovation and Universities under project PGC2018-646 096849-B-I00 (MCFin)

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review

    Get PDF
    Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach. It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant

    Evolution of trading strategies with flexible structures: A configuration comparison

    Get PDF
    Evolutionary Computation is often used in the domain of automated discovery of trading rules. Within this area, both Genetic Programming and Grammatical Evolution offer solutions with similar structures that have two key advantages in common: they are both interpretable and flexible in terms of their structure. The core algorithms can be extended to use automatically defined functions or mechanisms aimed to promote parsimony. The number of references on this topic is ample, but most of the studies focus on a specific setup. This means that it is not clear which is the best alternative. This work intends to fill that gap in the literature presenting a comprehensive set of experiments using both techniques with similar variations, and measuring their sensitivity to an increase in population size and composition of the terminal set. The experimental work, based on three S&P 500 data sets, suggest that Grammatical Evolution generates strategies that are more profitable, more robust and simpler, especially when a parsimony control technique was applied. As for the use of automatically defined function, it improved the performance in some experiments, but the results were inconclusive. (C) 2018 Elsevier B.V. All rights reserved.The authors acknowledge financial support granted by the Spanish Ministry of Science and Innovation under grant ENE2014-56126-C2-2-R

    Investment Opportunities Forecasting: Extending the Grammar of a GP-based Tool

    Get PDF
    In this paper we present a new version of a GP financial forecasting tool, called EDDIE 8. The novelty of this version is that it allows the GP to search in the space of indicators, instead of using pre-specified ones. We compare EDDIE 8 with its predecessor, EDDIE 7, and find that new and improved solutions can be found. Analysis also shows that, on average, EDDIE 8's best tree performs better than the one of EDDIE 7. The above allows us to characterize EDDIE 8 as a valuable forecasting tool
    • …
    corecore