2,609 research outputs found

    Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Get PDF
    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Adaptive control of a flexible TR-robot

    Get PDF

    (Adaptive) computed torque control of (flexible) robot systems

    Get PDF

    Experimental External Force Estimation Using a Non-Linear Observer for 6 axes Flexible-Joint Industrial Manipulators

    Get PDF
    This paper proposes a non-linear observer to estimate not only the state (position and velocity) of links but also the external forces exerted by the robot during Friction Stir Welding (FSW) processes. The difficulty of performing this process with a robot lies in its lack of rigidity. In order to ensure a better tracking performance, the data such as real positions, velocities of links and external forces are required. However, those variations are not always measured in most industrial robots. Therefore, in this study, an observer is proposed to reconstruct those necessary parameters by using only measurements of motor side. The proposed observer is carried out on a 6 DOF flexible-joint industrial manipulator used in a FSW process.ANR-2010-SEGI-003-01-COROUSSO, French National Agenc

    Adaptive Control of Flexible Joint Robots Derived from Arm Energy Considerations

    Get PDF
    Almost all industrial robots exhibit joint flexibility due to mechanical compliance of their gear boxes. In this paper we outline a design of an adaptive controller for flexible joint robots based on the arms energy. The desired actuator trajectory in a flexible joint robot is dependent not only on the desired kinematic trajectory of the link but also on the link dynamics. Unfortunately, link dynamic parameters are unknown in most cases, as a result the desired actuator trajectory is also unknown. To overcome this difficulty, a number of control schemes have suggested the use of acceleration and link jerk feedback. In this paper we describe a control scheme which does not use link jerk or acceleration. The control law we derive is based on the energy of the arm deviating from the desired trajectory and it has two stages with two corresponding adaptation laws. The first stage drives the actuator and the joints to a desired manifold, the second controller then seeks to drive the joints to their desired trajectory. On application of our first controller there is an apparent structural reduction of the order of the system. This apparent reduction in the structure is exploited by our second stage controller. Our control scheme does not require link acceleration or jerk measurements, and the numerical differentiation of the velocity signal, or the inversion of the inertial matrices are also unnecessary. Simulations are presented to verify the validity of the control scheme. The superiority of the proposed scheme over existing rigid robot adaptive schemes is also illustrated through simulation

    Deformation Control in Rest-to-Rest Motion of Mechanisms with Flexible Links

    Get PDF
    This paper develops and validates experimentally a feedback strategy for the reduction of the link deformations in rest-to-rest motion of mechanisms with flexible links, named Delayed Reference Control (DRC). The technique takes advantage of the inertial coupling between rigid-bodymotion and elasticmotion to control the undesired link deformations by shifting in time the position reference through an action reference parameter. The action reference parameter is computed on the fly based on the sensed strains by solving analytically an optimization problem. An outer control loop is closed to compute the references for the position controllers of each actuator, which can be thought of as the inner control loop. The resulting multiloop architecture of the DRC is a relevant advantage over several traditional feedback controllers: DRC can be implemented by just adding an outer control loop to standard position controllers. A validation of the proposed control strategy is provided by applying the DRC to the real-time control of a four-bar linkage

    Intelligent Control

    Get PDF
    corecore