1,453 research outputs found

    Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems

    Get PDF
    This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment

    Performance Investigations of an Improved Backstepping Operational space Position Tracking Control of a Mobile Manipulator

    Get PDF
    This article implies an improved backstepping control technique for the operational-space position tracking of a kinematically redundant mobile manipulator. The mobile manipulator thought-out for the analysis has a vehicle base with four mecanum wheels and a serial manipulator arm with three rotary actuated joints. The recommended motion controller provides a safeguard against the system dynamic variations owing to the parameter uncertainties, unmodelled system dynamics and unknown exterior disturbances. The Lyapunov’s direct method assists in designing and authenticating the system’s closed-loop stability and tracking ability of the suggested control strategy. The feasibility, effectiveness and robustness of the recommended controller are demonstrated and investigated numerically with the help of computer based simulations. The mathematical model used for the computer-based simulations is derived based on a real-time mobile manipulator and the derived model is further verified with an inbuilt gazebo model in a robot operating system (ROS) environment. In addition, the proposed scheme is verified on an in-house fabricated mobile manipulator system. Further, the recommended controller performance is correlated with the conventional backstepping control design in both computer-based simulations and in real-time experiments

    Multilayer perceptron functional adaptive control for trajectory tracking of wheeled mobile robots

    Get PDF
    Sigmoidal multilayer perceptron neural networks are proposed to effect functional adaptive control for handling the trajectory tracking problem in a nonholonomic wheeled mobile robot. The scheme is developed in discrete time and the multilayer perceptron neural networks are used for the estimation of the robot’s nonlinear kinematic functions, which are assumed to be unknown. On-line weight tuning is achieved by employing the extended Kalman filter algorithm based on a specifically formulated multiple-input, multiple-output, stochastic model for the trajectory error dynamics of the mobile base. The estimated functions are then used on a certainty equivalence basis in the control law proposed in (Corradini et al., 2003) for trajectory tracking. The performance of the system is analyzed and compared by simulation.peer-reviewe

    Design of Adaptive Switching Controller for Robotic Manipulators with Disturbance

    Get PDF
    Two adaptive switching control strategies are proposed for the trajectory tracking problem of robotic manipulator in this paper. The first scheme is designed for the supremum of the bounded disturbance for robot manipulator being known; while the supremum is not known, the second scheme is proposed. Each proposed scheme consists of an adaptive switching law and a PD controller. Based on the Lyapunov stability theorem, it is shown that two new schemes can guarantee tracking performance of the robotic manipulator and be adapted to the alternating unknown loads. Simulations for two-link robotic manipulator are carried out and show that the two schemes can avoid the overlarge input torque, and the feasibility and validity of the proposed control schemes are proved

    Neural Dynamics Variations Observer Designed for Robot Manipulator Control Using a Novel Saturated Control Technique

    Get PDF
    (is work presents a novel controller for the dynamics of robots using a dynamic variations observer. (e proposed controller uses a saturated control law based on sin(tg− 1(.)) function instead of tanh(.). Besides, this function is an alternative to the use of tanh(.) in saturation control, since it reaches its maximum value more gradually than the hyperbolic tangent function. Using this characteristic, the transition between states is smoother, with similar accuracy to tanh(.). (e controller is designed using a saturated SMC (sliding mode controller) and a dynamic variations observer based on GRNN (general regression neural network). (e originality of this work is the use of a combination of adaptive GRNN with a sliding mode controller (SMC) including a new saturation function. Finally, experiments based on trajectory tracking demonstrate the robustness and simplicity of this method.Fil: Rossomando, Francisco Guido. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de AutomĂĄtica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; ArgentinaFil: Serrano, Mario Emanuel. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de IngenierĂ­a QuĂ­mica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Soria, Carlos Miguel. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de AutomĂĄtica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; ArgentinaFil: Scaglia, Gustavo Juan Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de IngenierĂ­a QuĂ­mica; Argentin

    RBF Neural Network of Sliding Mode Control for Time-Varying 2-DOF Parallel Manipulator System

    Get PDF
    This paper presents a radial basis function (RBF) neural network control scheme for manipulators with actuator nonlinearities. The control scheme consists of a time-varying sliding mode control (TVSMC) and an RBF neural network compensator. Since the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded. The whole scheme provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion
    • 

    corecore