60 research outputs found

    Efficient Information Dissemination in VANETs

    Get PDF

    Image scoring in ad-hoc networks : an investigation on realistic settings

    Get PDF
    Encouraging cooperation in distributed Multi-Agent Systems (MAS) remains an open problem. Emergent application domains such as Mobile Ad-hoc Networks (MANETs) are characterised by constraints including sparse connectivity and a lack of direct interaction history. Image scoring, a simple model of reputation proposed by Nowak and Sigmund, exhibits low space and time complexity and promotes cooperation through indirect reciprocity, in which an agent can expect cooperation in the future without repeat interactions with the same partners. The low overheads of image scoring make it a promising technique for ad-hoc networking domains. However, the original investigation of Nowak and Sigmund is limited in that it (i) used a simple idealised setting, (ii) did not consider the effects of incomplete information on the mechanism’s efficacy, and (iii) did not consider the impact of the network topology connecting agents. We address these limitations by investigating more realistic values for the number of interactions agents engage in, and show that incomplete information can cause significant errors in decision making. As the proportion of incorrect decisions rises, the efficacy of image scoring falls and selfishness becomes more dominant. We evaluate image scoring on three different connection topologies: (i) completely connected, which closely approximates Nowak and Sigmund’s original setup, (ii) random, with each pair of nodes connected with a constant probability, and (iii) scale-free, which is known to model a number of real world environments including MANETs

    A survey on probabilistic broadcast schemes for wireless ad hoc networks

    Get PDF
    Broadcast or flooding is a dissemination technique of paramount importance in wireless ad hoc networks. The broadcast scheme is widely used within routing protocols by a wide range of wireless ad hoc networks such as mobile ad hoc networks, vehicular ad hoc networks, and wireless sensor networks, and used to spread emergency messages in critical scenarios after a disaster scenario and/or an accidents. As the type broadcast scheme used plays an important role in the performance of the network, it has to be selected carefully. Though several types of broadcast schemes have been proposed, probabilistic broadcast schemes have been demonstrated to be suitable schemes for wireless ad hoc networks due to a range of benefits offered by them such as low overhead, balanced energy consumption, and robustness against failures and mobility of nodes. In the last decade, many probabilistic broadcast schemes have been proposed by researchers. In addition to reviewing the main features of the probabilistic schemes found in the literature, we also present a classification of the probabilistic schemes, an exhaustive review of the evaluation methodology including their performance metrics, types of network simulators, their comparisons, and present some examples of real implementations, in this paper

    Computer simulations of VANETs using realistic city topologies

    Full text link
    Researchers in vehicular ad hoc networks (VANETs) commonly use simulation to test new algorithms and techniques. This is the case because of the high cost and labor involved in deploying and testing vehicles in real outdoor scenarios. However, when determining the factors that should be taken into account in these simulations, some factors such as realistic road topologies and presence of obstacles are rarely addressed. In this paper, we first evaluate the packet error rate (PER) through actual measurements in an outdoor road scenario, and deduce a close model of the PER for VANETs. Secondly, we introduce a topology-based visibility scheme such that road dimension and geometry can be accounted for, in addition to line-of-sight. We then combine these factors to determine when warning messages (i.e., messages that warn drivers of danger and hazards) are successfully received in a VANET. Through extensive simulations using different road topologies, city maps, and visibility schemes, we show these factors can impact warning message dissemination time and packet delivery rate.This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2011-27543-C03-01, and by the Diputacion General de Aragon, under Grant "subvenciones destinadas a la formacion y contratacion de personal investigador".Martínez, FJ.; Fogue, M.; Toh, C.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). Computer simulations of VANETs using realistic city topologies. Wireless Personal Communications. 69(2):639-663. https://doi.org/10.1007/s11277-012-0594-6S639663692Martinez F. J., Toh C.-K., Cano J.-C., Calafate C. T., Manzoni P. (2011) A survey and comparative study of simulators for vehicular ad hoc networks (VANETs). Wireless Communications and Mobile Computing Journal 11(7): 813–828Toh C.-K. (2001) Ad hoc mobile wireless networks: Protocols and systems. Prentice Hall, Englewood Cliffs, NJIEEE 802.11 Working Group. (2010). IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: Wireless Access in Vehicular Environments.Sommer, C., Eckhoff, D., German, R., & Dressler F. (2011). A computationally inexpensive empirical model of IEEE 802.11p radio shadowing in urban environments. In Eighth international conference on wireless on-demand network systems and services (WONS), pp. 84–90.Bohm, A., Lidstrom, K., Jonsson, M., & Larsson, T. (2010). Evaluating CALM M5-based vehicle-to-vehicle communication in various road settings through field trials. In Proceedings of the 35th IEEE conference on local computer networks (LCN’10), Denver, Colorado, USA, pp. 613–620.Martinez, F. J., Fogue, M., Coll, M., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2010). Assessing the impact of a realistic radio propagation model on VANET scenarios using real maps. In 9th IEEE international symposium on network computing and applications (NCA), Boston, USA, pp. 132–139.Fall, K., & Varadhan, K. (2000). “ns notes and documents,” The VINT project. UC Berkeley, LBL, USC/ISI, and Xerox PARC, February 2000. Available at http://www.isi.edu/nsnam/ns/ns-documentation.html .Marinoni, S., & Kari, H. H. (2006). Ad hoc routing protocol performance in a realistic environment. In Proceedings of the international conference on networking, international conference on systems and international conference on mobile communications and learning technologies (ICN/ICONS/MCL 2006), Washington, DC, USA.Mahajan, A., Potnis, N., Gopalan, K., & Wang, A. (2007). Modeling VANET deployment in urban settings. In International workshop on modeling analysis and simulation of wireless and mobile systems (MSWiM 2007), Crete Island, Greece.Suriyapaiboonwattana, K., Pornavalai, C., & Chakraborty, G. (2009). An adaptive alert message dissemination protocol for VANET to improve road safety. In IEEE intlernational conference on fuzzy systems, 2009. FUZZ-IEEE 2009, pp. 1639–1644.Bako, B., Schoch, E., Kargl, F., & Weber, M. (2008). Optimized position based gossiping in VANETs. In Vehicular technology conference, 2008. VTC 2008-Fall. IEEE 68th, pp. 1–5.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2008). Citymob: A mobility model pattern generator for VANETs. In IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), Beijing, China.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2007). Inter-vehicle communications: Assessing information dissemination under safety constraints. In Proceedings of the 4th annual conference on wireless on demand network systems and services (WONS), Oberguyrgl, Austria.Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). Realistic radio propagation models (RPMs) for VANET simulations. In IEEE wireless communications and networking conference (WCNC), Budapest, Hungary.Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2010). A street broadcast reduction scheme (SBR) to mitigate the broadcast storm problem in VANETs. Wireless personal communications, pp. 1–14. doi: 10.1007/s11277-010-9989-4Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., & Sheu, J.-P. (1999). The broadcast storm problem in a mobile ad hoc network. In ACM/IEEE international conference on mobile computing and networking (MobiCom 1999), Seattle Washington.Krajzewicz, D., & Rossel, C. (2007). “Simulation of urban mobility (SUMO),” Centre for Applied Informatics (ZAIK) and the Institute of Transport Research at the German Aerospace Centre. Available at http://sumo.sourceforge.net/index.shtml .OpenStreetMap Team. (2009). OpenStreetMap, collaborative project to create a free editable map of the world. Available at http://www.openstreetmap.org .U.S. Census Bureau. (2009). TIGER, topologically integrated geographic encoding and referencing. Available at http://www.census.gov/geo/www/tiger .Krauss S., Wagner P., Gawron C. (1997) Metastable states in a microscopic model of traffic flow. Physical Review E 55(5): 5597–5602Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (Simulation of Urban MObility)—An open-source traffic simulation. In Proceedings of the 4th middle east symposium on simulation and modelling (MESM2002), Sharjah, United Arab Emirates, pp. 183–187

    Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives

    Get PDF
    Vehicular  Ad Hoc Network  (VANET) is emerged as an important research area that provides ubiquitous short-range connectivity among moving vehicles.  This network enables efficient traffic safety and infotainment applications. One of the promising applications is video transmission in vehicle-to-vehicle or vehicle-to-infrastructure environments.  But, video streaming over vehicular environment is a daunting task due to high movement of vehicles. This paper presents a survey on state-of-arts of video streaming over VANET. Furthermore, taxonomy of vehicular video transmission is highlighted in this paper with special focus on significant applications and their requirements with challenges, video content sharing, multi-source video streaming and video broadcast services. The comparative study of the paper compares the video streaming schemes based on type of error resilient technique, objective of study, summary of their study, the utilized simulator and the type of video sharing.  Lastly, we discussed the open issues and research directions related to video communication over VANET

    Vehicle density in VANET Applications

    Get PDF
    This paper analyzes how street-level traffic data affects routing in VANETs applications. First, we offer a general review about which protocols and techniques would fit best for VANET applications. We selected five main technical aspects (Transmission, Routing, Quality of Service, Security and Location) that we consider are differential aspects of VANETs from current Ad-Hoc Networks. Second, the paper analyzes how to configure each technical aspect according to the goal of a wide range of VANET applications. Third, we look at the routing aspect in depth, specifically focusing on how vehicle density affects routing, which protocols are the best option when there is a high/low density, etc. Finally, this research implements a sensor technology, based on an acoustics sensor that has been deployed around the city of Xalapa in MĂŠxico, to obtain reliable information on the real-time density of vehicles. The levels of density were discretized and the obtained data samples were used to feed a traffic simulator, which allowed us to obtain a global picture of the density of the central area of the city. According to the specific levels of vehicle density at a specific moment and place, VANET applications may adapt the routing protocol in a real-time wayPeer ReviewedPostprint (published version

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    Towards reliable geographic broadcasting in vehicular networks

    Get PDF
    In Vehicular ad hoc Networks (VANETs), safety-related messages are broadcasted amongst cars, helping to improve drivers' awareness of the road situation. VANETs’ reliability are highly affected by channel contention. This thesis first addresses the issue of channel use efficiency in geographical broadcasts (geocasts). Constant connectivity changes inside a VANET make the existing routing algorithms unsuitable. This thesis presents a geocast algorithm that uses a metric to estimate the ratio of useful to useless packet received. Simulations showed that this algorithm is more channel-efficient than the farthest-first strategy. It also exposes a parameter, allowing it to adapt to channel load. Second, this thesis presents a method of estimating channel load for providing feedback to moderate the offered load. A theoretical model showing the relationship between channel load and the idle time between transmissions is presented and used to estimate channel contention. Unsaturated stations on the network were shown to have small but observable effects on this relationship. In simulations, channel estimators based on this model show higher accuracy and faster convergence time than by observing packet collisions. These estimators are also less affected by unsaturated stations than by observing packet collisions. Third, this thesis couples the channel estimator to the geocast algorithm, producing a closed-loop load-reactive system that allows geocasts to adapt to instantaneous channel conditions. Simulations showed that this system is not only shown to be more efficient in channel use and be able to adapt to channel contention, but is also able to self-correct suboptimal retransmission decisions. Finally, this thesis demonstrates that all tested network simulators exhibit unexpected behaviours when simulating broadcasts. This thesis describes in depth the error in ns-3, leading to a set of workarounds that allows results from most versions of ns-3 to be interpreted correctly

    Analysis of Structured and Un-Structured Network Protocols for Data Aggregation Over Distributed Wireless Sensor Networks

    Get PDF
    The focus of this thesis is on design and evaluation of one-shot data aggregation protocols for static and mobile wireless sensor networks (WSNs). The goal in one-shot data aggregation is to compute a statistical summary of sensor data such as max, average, sum, count and min, when initiated by a special node such as the base station. WSNs have wide range of applications in both static and mobile/dynamic systems. Static sensor networks are especially useful when monitoring is required in harsh, inaccessible environments and when the region to be monitored is really large. Examples of static sensor network applications include environmental monitoring systems, monitoring of industrial control systems, monitoring of degradation in slagging gasifiers, distributed object detection and tracking. Example of mobile applications include vehicular ad-hoc networks and networks of personal radios used in emergency dispatch and battlefields.;For data aggregation in static networks with stable links, structured approaches such as spanning trees are generally preferred. This is because, once a data aggregation structure has been established, link topologies remain fixed and there is minimal need to actively maintain and change the routing structures. In this thesis, one such tree based data aggregation protocol has been designed and evaluated using simulations in networks ranging from 100-1000 nodes. The protocol has also been implemented at a smaller scale in the context of a smart refractory environment, where slag penetration in gasifiers is remotely monitored using smart bricks that are embedded with sensors. In mobile networks and networks with frequent link changes, topology driven structures are likely to be unstable and to incur a high communication overhead. Therefore, self-repelling random walks have been recently proposed as an attractive alternative for data aggregation in mobile systems. In this thesis, a brief overview of random walk based data aggregation has been presented and systematic evaluation of tree based and random walk based data aggregation protocols in networks ranging from 100-1000 nodes under varying degrees of node mobility has been done. The conditions under which unstructured protocols become more attractive in terms of convergence time and messaging efficiency as compared to tree based structured approaches have been quantified

    Localization Enhanced Mobile Networks

    Get PDF
    The interest in mobile ad-hoc networks (MANETs) and often more precisely vehicular ad-hoc networks (VANETs) is steadily growing with many new applications, and even anticipated support in the emerging 5G networks. Particularly in outdoor scenarios, there are different mechanisms to make the mobile nodes aware of their geographical location at all times. The location information can be utilized at different layers of the protocol stack to enhance communication services in the network. Specifically, geographical routing can facilitate route management with smaller overhead than the traditional proactive and reactive routing protocols. In order to achieve similar advantages for radio resource management (RRM) and multiple access protocols, the concept of virtual cells is devised to exploit fully distributed knowledge of node locations. The virtual cells define clusters of MANET nodes assuming a predefined set of geographically distributed anchor points. It enables fast response of the network to changes in the nodes spatial configuration. More importantly, the notion of geographical location can be generalized to other shared contexts which can be learned or otherwise acquired by the network nodes. The strategy of enhancing communication services by shared contexts is likely to be one of the key features in the beyond-5G networks
    • …
    corecore