57,878 research outputs found

    Adaptive mastery testing using the Rasch model and Bayesian sequential decision theory

    Get PDF
    A version of sequential mastery testing is studied in which response behavior is modeled by an item response theory (IRT) model. First, a general theoretical framework is sketched that is based on a combination of Bayesian sequential decision theory and item response theory. A discussion follows on how IRT based sequential mastery testing can be generalized to adaptive item and testlet selection rules; i.e., to a situation in which the choice of the next item or testlet to be administered is optimized using the information from previous responses. The performance of IRT based sequential and adaptive sequential mastery testing is studied in a number of simulations using the Rasch model. The possibilities and difficulties of application of the approach in the framework of the two-parameter logistic and three-parameter logistic models is also discussed

    Sequentiality and Adaptivity Gains in Active Hypothesis Testing

    Full text link
    Consider a decision maker who is responsible to collect observations so as to enhance his information in a speedy manner about an underlying phenomena of interest. The policies under which the decision maker selects sensing actions can be categorized based on the following two factors: i) sequential vs. non-sequential; ii) adaptive vs. non-adaptive. Non-sequential policies collect a fixed number of observation samples and make the final decision afterwards; while under sequential policies, the sample size is not known initially and is determined by the observation outcomes. Under adaptive policies, the decision maker relies on the previous collected samples to select the next sensing action; while under non-adaptive policies, the actions are selected independent of the past observation outcomes. In this paper, performance bounds are provided for the policies in each category. Using these bounds, sequentiality gain and adaptivity gain, i.e., the gains of sequential and adaptive selection of actions are characterized.Comment: 12 double-column pages, 1 figur

    Active Classification: Theory and Application to Underwater Inspection

    Full text link
    We discuss the problem in which an autonomous vehicle must classify an object based on multiple views. We focus on the active classification setting, where the vehicle controls which views to select to best perform the classification. The problem is formulated as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We formally analyze the benefit of acting adaptively as new information becomes available. The analysis leads to a probabilistic algorithm for determining the best views to observe based on information theoretic costs. We validate our approach in two ways, both related to underwater inspection: 3D polyhedra recognition in synthetic depth maps and ship hull inspection with imaging sonar. These tasks encompass both the planning and recognition aspects of the active classification problem. The results demonstrate that actively planning for informative views can reduce the number of necessary views by up to 80% when compared to passive methods.Comment: 16 page
    • …
    corecore