226 research outputs found

    Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems

    Get PDF
    This paper presents a novel application of a hybrid learning approach to the optimisation of membership and non-membership functions of a newly developed interval type-2 intuitionistic fuzzy logic system (IT2 IFLS) of a Takagi-Sugeno-Kang (TSK) fuzzy inference system with neural network learning capability. The hybrid algorithms consisting of decou- pled extended Kalman filter (DEKF) and gradient descent (GD) are used to tune the parameters of the IT2 IFLS for the first time. The DEKF is used to tune the consequent parameters in the forward pass while the GD method is used to tune the antecedents parts during the backward pass of the hybrid learning. The hybrid algorithm is described and evaluated, prediction and identification results together with the runtime are compared with similar existing studies in the literature. Performance comparison is made between the proposed hybrid learning model of IT2 IFLS, a TSK-type-1 intuitionistic fuzzy logic system (IFLS-TSK) and a TSK-type interval type-2 fuzzy logic system (IT2 FLS-TSK) on two instances of the datasets under investigation. The empirical comparison is made on the designed systems using three artificially generated datasets and three real world datasets. Analysis of results reveal that IT2 IFLS outperforms its type-1 variants, IT2 FLS and most of the existing models in the literature. Moreover, the minimal run time of the proposed hybrid learning model for IT2 IFLS also puts this model forward as a good candidate for application in real time systems

    A big bang-big crunch optimization based approach for interval type-2 fuzzy PID controller design

    Get PDF
    In this paper, we will present a big bang-big crunch optimization (BB-BC) based approach for the design of an interval type-2 fuzzy PID controller. The implemented global optimization algorithm has a low computational cost and a high convergence speed. As a consequence, the BB-BC method is a very efficient search algorithm when the number of the optimization parameters is relatively big. The optimized type-2 fuzzy controller is compared with PID and type-1 fuzzy PID controllers which were optimized with either the BB-BC optimization method or conventional design strategies. The paper will also show the effect the extra degrees of freedom provided by the antecedent interval type-2 fuzzy sets on the closed loop system performance. We will present a comparative study performed on the highly nonlinear cascaded tank process to show the superiority of the optimized interval type-2 fuzzy PID controller compared to its optimized PID, type-1 counterparts. © 2013 IEEE

    Online probabilistic learning for fuzzy inference system

    Get PDF

    Dynamic non-linear system modelling using wavelet-based soft computing techniques

    Get PDF
    The enormous number of complex systems results in the necessity of high-level and cost-efficient modelling structures for the operators and system designers. Model-based approaches offer a very challenging way to integrate a priori knowledge into the procedure. Soft computing based models in particular, can successfully be applied in cases of highly nonlinear problems. A further reason for dealing with so called soft computational model based techniques is that in real-world cases, many times only partial, uncertain and/or inaccurate data is available. Wavelet-Based soft computing techniques are considered, as one of the latest trends in system identification/modelling. This thesis provides a comprehensive synopsis of the main wavelet-based approaches to model the non-linear dynamical systems in real world problems in conjunction with possible twists and novelties aiming for more accurate and less complex modelling structure. Initially, an on-line structure and parameter design has been considered in an adaptive Neuro- Fuzzy (NF) scheme. The problem of redundant membership functions and consequently fuzzy rules is circumvented by applying an adaptive structure. The growth of a special type of Fungus (Monascus ruber van Tieghem) is examined against several other approaches for further justification of the proposed methodology. By extending the line of research, two Morlet Wavelet Neural Network (WNN) structures have been introduced. Increasing the accuracy and decreasing the computational cost are both the primary targets of proposed novelties. Modifying the synoptic weights by replacing them with Linear Combination Weights (LCW) and also imposing a Hybrid Learning Algorithm (HLA) comprising of Gradient Descent (GD) and Recursive Least Square (RLS), are the tools utilised for the above challenges. These two models differ from the point of view of structure while they share the same HLA scheme. The second approach contains an additional Multiplication layer, plus its hidden layer contains several sub-WNNs for each input dimension. The practical superiority of these extensions is demonstrated by simulation and experimental results on real non-linear dynamic system; Listeria Monocytogenes survival curves in Ultra-High Temperature (UHT) whole milk, and consolidated with comprehensive comparison with other suggested schemes. At the next stage, the extended clustering-based fuzzy version of the proposed WNN schemes, is presented as the ultimate structure in this thesis. The proposed Fuzzy Wavelet Neural network (FWNN) benefitted from Gaussian Mixture Models (GMMs) clustering feature, updated by a modified Expectation-Maximization (EM) algorithm. One of the main aims of this thesis is to illustrate how the GMM-EM scheme could be used not only for detecting useful knowledge from the data by building accurate regression, but also for the identification of complex systems. The structure of FWNN is based on the basis of fuzzy rules including wavelet functions in the consequent parts of rules. In order to improve the function approximation accuracy and general capability of the FWNN system, an efficient hybrid learning approach is used to adjust the parameters of dilation, translation, weights, and membership. Extended Kalman Filter (EKF) is employed for wavelet parameters adjustment together with Weighted Least Square (WLS) which is dedicated for the Linear Combination Weights fine-tuning. The results of a real-world application of Short Time Load Forecasting (STLF) further re-enforced the plausibility of the above technique

    Design and implementation of fuzzy-based PID controller

    Get PDF
    controller is widely used in many industrial applications due to its simplicity in StmctllIe and ease of design. However, it is difficult to achieve .the desired control performance in the presence of unknown nonlinearities, time delays, disturbances as well as changes in system parameters. Consequently several PID models have been suggested so at to alleviate these effects on the performance of the PID controllers. One such method is based on fuzzy logic technique which is considered much more appropri.ate when precise mathematical formulation is infeasible or difficult to achieve. Furthermore, some applications such as semiconductor packaging, computer disk drives, and ultra-precision machining require a fast and high precision processing. Consequently, there is the need to consider digital signal processor (DSI?)- based fuzzy PID for use in such applications. Design and implementation of such technique is proposed in this paper. Results of simulation studies haw demonstrated the feasibility of this controller since: it produces fast response with smooth motion control

    Design and implementation of fuzzy-based PID controller

    Get PDF
    Conventional proportional integral derivative (PID) controller is widely used in many industrial applications due to its simplicity in StmctllIe and ease of design. However, it is difficult to achieve .the desired control performance in the presence of unknown nonlinearities, time delays, disturbances as well as changes in system parameters. Consequently several PID models have been suggested so at to alleviate these effects on the performance of the PID controllers. One such method is based on fuzzy logic technique which is considered much more appropri.ate when precise mathematical formulation is infeasible or difficult to achieve. Furthermore, some applications such as semiconductor packaging, computer disk drives, and ultra-precision machining require a fast and high precision processing. Consequently, there is the need to consider digital signal processor (DSI?)- based fuzzy PID for use in such applications. Design and implementation of such technique is proposed in this paper. Results of simulation studies haw demonstrated the feasibility of this controller since: it produces fast response with smooth motion control

    Proceedings. 23. Workshop Computational Intelligence, Dortmund, 5. - 6. Dezember 2013

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 23. Workshops Computational Intelligence des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA), der vom 5. - 6. Dezember 2013 in Dortmund stattgefunden hat. Im Fokus stehen Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren

    Advanced Signal Processing and Control in Anaesthesia

    Get PDF
    This thesis comprises three major stages: classification of depth of anaesthesia (DOA); modelling a typical patient’s behaviour during a surgical procedure; and control of DOAwith simultaneous administration of propofol and remifentanil. Clinical data gathered in theoperating theatre was used in this project. Multiresolution wavelet analysis was used to extract meaningful features from the auditory evoked potentials (AEP). These features were classified into different DOA levels using a fuzzy relational classifier (FRC). The FRC uses fuzzy clustering and fuzzy relational composition. The FRC had a good performance and was able to distinguish between the DOA levels. A hybrid patient model was developed for the induction and maintenance phase of anaesthesia. An adaptive network-based fuzzy inference system was used to adapt Takagi-Sugeno-Kang (TSK) fuzzy models relating systolic arterial pressure (SAP), heart rate (HR), and the wavelet extracted AEP features with the effect concentrations of propofol and remifentanil. The effect of surgical stimuli on SAP and HR, and the analgesic properties of remifentanil were described by Mamdani fuzzy models, constructed with anaesthetist cooperation. The model proved to be adequate, reflecting the effect of drugs and surgical stimuli. A multivariable fuzzy controller was developed for the simultaneous administration of propofol and remifentanil. The controller is based on linguistic rules that interact with three decision tables, one of which represents a fuzzy PI controller. The infusion rates of the two drugs are determined according to the DOA level and surgical stimulus. Remifentanil is titrated according to the required analgesia level and its synergistic interaction with propofol. The controller was able to adequately achieve and maintain the target DOA level, under different conditions. Overall, it was possible to model the interaction between propofol and remifentanil, and to successfully use this model to develop a closed-loop system in anaesthesia

    Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters

    Get PDF
    Abstract-This paper presents a new kind of adaptive filter: type-2 fuzzy adaptive filter (FAF); one that is realized using an unnormalized type-2 Takagi-Sugeno-Kang (TSK) fuzzy logic system (FLS). We apply this filter to equalization of a nonlinear time-varying channel and demonstrate that it can implement the Bayesian equalizer for such a channel, has a simple structure, and provides fast inference. A clustering method is used to adaptively design the parameters of the FAF. Two structures are used for the equalizer: transversal equalizer (TE) and decision feedback equalizer (DFE). A new decision tree structure is used to implement the decision feedback equalizer, in which each leaf of the tree is a type-2 FAF. This DFE vastly reduces computational complexity as compared to a TE. Simulation results show that equalizers based on type-2 FAFs perform much better than nearest neighbor classifiers (NNC) or equalizers based on type-1 FAFs. Index Terms-Channel equalization, decision feedback equalizer, decision tree, interval type-2 TSK fuzzy logic systems, timevarying channels, type-2 fuzzy adaptive filters

    Development of Fuzzy Applications for High Performance Induction Motor Drive

    Get PDF
    This chapter develops a sliding mode and fuzzy logic-based speed controller, which is named adaptive fuzzy sliding-mode controller (AFSMC) for an indirect field-oriented control (IFOC) of an induction motor (IM) drive. Essentially, the boundary layer approach is the most popular method to reduce the chattering phenomena, which leads to trade-off between control performances, and chattering elimination for uncertain nonlinear systems. For the proposed AFSMC, a fuzzy system is assigned as the reaching control part of the fuzzy sliding-mode controller so that it improves the control performances and eliminates the chattering completely despite large and small uncertainties in the system. A nonlinear adaptive law is also implemented to adjust the control gain with uncertainties of the system. The adaptive law is developed in the sense of Lyapunov stability theorem to minimize the control effort. The applied adaptive fuzzy controller acts like a saturation function in the thin boundary layer near the sliding surface to guarantee the stability of the system. The proposed AFSMC-based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed AFSMC-based IM drive at different operating conditions such as load disturbance, parameter variations, etc
    • …
    corecore