5,008 research outputs found

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Learning from Multi-View Multi-Way Data via Structural Factorization Machines

    Full text link
    Real-world relations among entities can often be observed and determined by different perspectives/views. For example, the decision made by a user on whether to adopt an item relies on multiple aspects such as the contextual information of the decision, the item's attributes, the user's profile and the reviews given by other users. Different views may exhibit multi-way interactions among entities and provide complementary information. In this paper, we introduce a multi-tensor-based approach that can preserve the underlying structure of multi-view data in a generic predictive model. Specifically, we propose structural factorization machines (SFMs) that learn the common latent spaces shared by multi-view tensors and automatically adjust the importance of each view in the predictive model. Furthermore, the complexity of SFMs is linear in the number of parameters, which make SFMs suitable to large-scale problems. Extensive experiments on real-world datasets demonstrate that the proposed SFMs outperform several state-of-the-art methods in terms of prediction accuracy and computational cost.Comment: 10 page

    Adaptive algorithms for real-world transactional data mining.

    Get PDF
    The accurate identiļ¬cation of the right customer to target with the right product at the right time, through the right channel, to satisfy the customerā€™s evolving needs, is a key performance driver and enhancer for businesses. Data mining is an analytic process designed to explore usually large amounts of data (typically business or market related) in search of consistent patterns and/or systematic relationships between variables for the purpose of generating explanatory/predictive data models from the detected patterns. It provides an effective and established mechanism for accurate identiļ¬cation and classiļ¬cation of customers. Data models derived from the data mining process can aid in effectively recognizing the status and preference of customers - individually and as a group. Such data models can be incorporated into the business market segmentation, customer targeting and channelling decisions with the goal of maximizing the total customer lifetime proļ¬t. However, due to costs, privacy and/or data protection reasons, the customer data available for data mining is often restricted to veriļ¬ed and validated data,(in most cases,only the business owned transactional data is available). Transactional data is a valuable resource for generating such data models. Transactional data can be electronically collected and readily made available for data mining in large quantity at minimum extra cost. Transactional data is however, inherently sparse and skewed. These inherent characteristics of transactional data give rise to the poor performance of data models built using customer data based on transactional data. Data models for identifying, describing, and classifying customers, constructed using evolving transactional data thus need to effectively handle the inherent sparseness and skewness of evolving transactional data in order to be efficient and accurate. Using real-world transactional data, this thesis presents the ļ¬ndings and results from the investigation of data mining algorithms for analysing, describing, identifying and classifying customers with evolving needs. In particular, methods for handling the issues of scalability, uncertainty and adaptation whilst mining evolving transactional data are analysed and presented. A novel application of a new framework for integrating transactional data binning and classiļ¬cation techniques is presented alongside an effective prototype selection algorithm for efficient transactional data model building. A new change mining architecture for monitoring, detecting and visualizing the change in customer behaviour using transactional data is proposed and discussed as an effective means for analysing and understanding the change in customer buying behaviour over time. Finally, the challenging problem of discerning between the change in the customer proļ¬le (which may necessitate the effective change of the customerā€™s label) and the change in performance of the model(s) (which may necessitate changing or adapting the model(s)) is introduced and discussed by way of a novel ļ¬‚exible and efficient architecture for classiļ¬er model adaptation and customer proļ¬les class relabeling

    Interaction Embeddings for Prediction and Explanation in Knowledge Graphs

    Full text link
    Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.Comment: This paper is accepted by WSDM201
    • ā€¦
    corecore