257 research outputs found

    Adaptive structure concept factorization for multiview clustering

    Get PDF
    Most existing multiview clustering methods require that graph matrices in different views are computed beforehand and that each graph is obtained independently. However, this requirement ignores the correlation between multiple views. In this letter, we tackle the problem of multiview clustering by jointly optimizing the graph matrix to make full use of the data correlation between views. With the interview correlation, a concept factorization–based multiview clustering method is developed for data integration, and the adaptive method correlates the affinity weights of all views. This method differs from nonnegative matrix factorization–based clustering methods in that it can be applicable to data sets containing negative values. Experiments are conducted to demonstrate the effectiveness of the proposed method in comparison with state-of-the-art approaches in terms of accuracy, normalized mutual information, and purity

    Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information

    Get PDF
    In this paper we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view image sequence. In contrast to prior motion information based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology by a successive iterative merge process. The iterative merge process is guided by a skeleton distance function which is generated from a novel object boundary generation method from sparse points. Our main contributions can be summarised as follows: (i) Unsupervised complex articulated kinematic structure learning by combining motion and skeleton information. (ii) Iterative fine-to-coarse merging strategy for adaptive motion segmentation and structure smoothing. (iii) Skeleton estimation from sparse feature points. (iv) A new highly articulated object dataset containing multi-stage complexity with ground truth. Our experiments show that the proposed method out-performs state-of-the-art methods both quantitatively and qualitatively

    Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation

    Full text link
    Recent studies have witnessed that self-supervised methods based on view synthesis obtain clear progress on multi-view stereo (MVS). However, existing methods rely on the assumption that the corresponding points among different views share the same color, which may not always be true in practice. This may lead to unreliable self-supervised signal and harm the final reconstruction performance. To address the issue, we propose a framework integrated with more reliable supervision guided by semantic co-segmentation and data-augmentation. Specially, we excavate mutual semantic from multi-view images to guide the semantic consistency. And we devise effective data-augmentation mechanism which ensures the transformation robustness by treating the prediction of regular samples as pseudo ground truth to regularize the prediction of augmented samples. Experimental results on DTU dataset show that our proposed methods achieve the state-of-the-art performance among unsupervised methods, and even compete on par with supervised methods. Furthermore, extensive experiments on Tanks&Temples dataset demonstrate the effective generalization ability of the proposed method.Comment: This paper is accepted by AAAI-21 with a Distinguished Paper Awar
    • …
    corecore