1,011 research outputs found

    Centrality Graph Convolutional Networks for Skeleton-based Action Recognition

    Full text link
    The topological structure of skeleton data plays a significant role in human action recognition. Combining the topological structure with graph convolutional networks has achieved remarkable performance. In existing methods, modeling the topological structure of skeleton data only considered the connections between the joints and bones, and directly use physical information. However, there exists an unknown problem to investigate the key joints, bones and body parts in every human action. In this paper, we propose the centrality graph convolutional networks to uncover the overlooked topological information, and best take advantage of the information to distinguish key joints, bones, and body parts. A novel centrality graph convolutional network firstly highlights the effects of the key joints and bones to bring a definite improvement. Besides, the topological information of the skeleton sequence is explored and combined to further enhance the performance in a four-channel framework. Moreover, the reconstructed graph is implemented by the adaptive methods on the training process, which further yields improvements. Our model is validated by two large-scale datasets, NTU-RGB+D and Kinetics, and outperforms the state-of-the-art methods

    Skeletal Human Action Recognition using Hybrid Attention based Graph Convolutional Network

    Full text link
    In skeleton-based action recognition, Graph Convolutional Networks model human skeletal joints as vertices and connect them through an adjacency matrix, which can be seen as a local attention mask. However, in most existing Graph Convolutional Networks, the local attention mask is defined based on natural connections of human skeleton joints and ignores the dynamic relations for example between head, hands and feet joints. In addition, the attention mechanism has been proven effective in Natural Language Processing and image description, which is rarely investigated in existing methods. In this work, we proposed a new adaptive spatial attention layer that extends local attention map to global based on relative distance and relative angle information. Moreover, we design a new initial graph adjacency matrix that connects head, hands and feet, which shows visible improvement in terms of action recognition accuracy. The proposed model is evaluated on two large-scale and challenging datasets in the field of human activities in daily life: NTU-RGB+D and Kinetics skeleton. The results demonstrate that our model has strong performance on both dataset.Comment: 26th International Conference on Pattern Recognition, 202
    • …
    corecore