3,896 research outputs found

    Abnormal Event Detection in Videos using Spatiotemporal Autoencoder

    Full text link
    We present an efficient method for detecting anomalies in videos. Recent applications of convolutional neural networks have shown promises of convolutional layers for object detection and recognition, especially in images. However, convolutional neural networks are supervised and require labels as learning signals. We propose a spatiotemporal architecture for anomaly detection in videos including crowded scenes. Our architecture includes two main components, one for spatial feature representation, and one for learning the temporal evolution of the spatial features. Experimental results on Avenue, Subway and UCSD benchmarks confirm that the detection accuracy of our method is comparable to state-of-the-art methods at a considerable speed of up to 140 fps

    Pattern Anomaly Detection based on Sequence-to-Sequence Regularity Learning

    Get PDF
    Anomaly detection in traffic surveillance videos is a challenging task due to the ambiguity of anomaly definition and the complexity of scenes. In this paper, we propose to detect anomalous trajectories for vehicle behavior analysis via learning regularities in data. First, we train a sequence-to-sequence model under the autoencoder architecture and propose a new reconstruction error function for model optimization and anomaly evaluation. As such, the model is forced to learn the regular trajectory patterns in an unsupervised manner. Then, at the inference stage, we use the learned model to encode the test trajectory sample into a compact representation and generate a new trajectory sequence in the learned regular pattern. An anomaly score is computed based on the deviation of the generated trajectory from the test sample. Finally, we can find out the anomalous trajectories with an adaptive threshold. We evaluate the proposed method on two real-world traffic datasets and the experiments show favorable results against state-of-the-art algorithms. This paper\u27s research on sequence-to-sequence regularity learning can provide theoretical and practical support for pattern anomaly detection
    • ā€¦
    corecore