226 research outputs found

    A pattern language for parallelizing irregular algorithms

    Get PDF
    Dissertação apresentada na Faculdade de CiĂȘncias e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia InformĂĄticaIn irregular algorithms, data set’s dependences and distributions cannot be statically predicted. This class of algorithms tends to organize computations in terms of data locality instead of parallelizing control in multiple threads. Thus, opportunities for exploiting parallelism vary dynamically, according to how the algorithm changes data dependences. As such, effective parallelization of such algorithms requires new approaches that account for that dynamic nature. This dissertation addresses the problem of building efficient parallel implementations of irregular algorithms by proposing to extract, analyze and document patterns of concurrency and parallelism present in the Galois parallelization framework for irregular algorithms. Patterns capture formal representations of a tangible solution to a problem that arises in a well defined context within a specific domain. We document the said patterns in a pattern language, i.e., a set of inter-dependent patterns that compose well-documented template solutions that can be reused whenever a certain problem arises in a well-known context

    Enabling Parallel Execution via Principled Speculation.

    Get PDF

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    Speculation in Parallel and Distributed Event Processing Systems

    Get PDF
    Event stream processing (ESP) applications enable the real-time processing of continuous flows of data. Algorithmic trading, network monitoring, and processing data from sensor networks are good examples of applications that traditionally rely upon ESP systems. In addition, technological advances are resulting in an increasing number of devices that are network enabled, producing information that can be automatically collected and processed. This increasing availability of on-line data motivates the development of new and more sophisticated applications that require low-latency processing of large volumes of data. ESP applications are composed of an acyclic graph of operators that is traversed by the data. Inside each operator, the events can be transformed, aggregated, enriched, or filtered out. Some of these operations depend only on the current input events, such operations are called stateless. Other operations, however, depend not only on the current event, but also on a state built during the processing of previous events. Such operations are, therefore, named stateful. As the number of ESP applications grows, there are increasingly strong requirements, which are often difficult to satisfy. In this dissertation, we address two challenges created by the use of stateful operations in a ESP application: (i) stateful operators can be bottlenecks because they are sensitive to the order of events and cannot be trivially parallelized by replication; and (ii), if failures are to be tolerated, the accumulated state of an stateful operator needs to be saved, saving this state traditionally imposes considerable performance costs. Our approach is to evaluate the use of speculation to address these two issues. For handling ordering and parallelization issues in a stateful operator, we propose a speculative approach that both reduces latency when the operator must wait for the correct ordering of the events and improves throughput when the operation in hand is parallelizable. In addition, our approach does not require that user understand concurrent programming or that he or she needs to consider out-of-order execution when writing the operations. For fault-tolerant applications, traditional approaches have imposed prohibitive performance costs due to pessimistic schemes. We extend such approaches, using speculation to mask the cost of fault tolerance.:1 Introduction 1 1.1 Event stream processing systems ......................... 1 1.2 Running example ................................. 3 1.3 Challenges and contributions ........................... 4 1.4 Outline ...................................... 6 2 Background 7 2.1 Event stream processing ............................. 7 2.1.1 State in operators: Windows and synopses ............................ 8 2.1.2 Types of operators ............................ 12 2.1.3 Our prototype system........................... 13 2.2 Software transactional memory.......................... 18 2.2.1 Overview ................................. 18 2.2.2 Memory operations............................ 19 2.3 Fault tolerance in distributed systems ...................................... 23 2.3.1 Failure model and failure detection ...................................... 23 2.3.2 Recovery semantics............................ 24 2.3.3 Active and passive replication ...................... 24 2.4 Summary ..................................... 26 3 Extending event stream processing systems with speculation 27 3.1 Motivation..................................... 27 3.2 Goals ....................................... 28 3.3 Local versus distributed speculation ....................... 29 3.4 Models and assumptions ............................. 29 3.4.1 Operators................................. 30 3.4.2 Events................................... 30 3.4.3 Failures .................................. 31 4 Local speculation 33 4.1 Overview ..................................... 33 4.2 Requirements ................................... 35 4.2.1 Order ................................... 35 4.2.2 Aborts................................... 37 4.2.3 Optimism control ............................. 38 4.2.4 Notifications ............................... 39 4.3 Applications.................................... 40 4.3.1 Out-of-order processing ......................... 40 4.3.2 Optimistic parallelization......................... 42 4.4 Extensions..................................... 44 4.4.1 Avoiding unnecessary aborts ....................... 44 4.4.2 Making aborts unnecessary........................ 45 4.5 Evaluation..................................... 47 4.5.1 Overhead of speculation ......................... 47 4.5.2 Cost of misspeculation .......................... 50 4.5.3 Out-of-order and parallel processing micro benchmarks ........... 53 4.5.4 Behavior with example operators .................... 57 4.6 Summary ..................................... 60 5 Distributed speculation 63 5.1 Overview ..................................... 63 5.2 Requirements ................................... 64 5.2.1 Speculative events ............................ 64 5.2.2 Speculative accesses ........................... 69 5.2.3 Reliable ordered broadcast with optimistic delivery .................. 72 5.3 Applications .................................... 75 5.3.1 Passive replication and rollback recovery ................................ 75 5.3.2 Active replication ............................. 80 5.4 Extensions ..................................... 82 5.4.1 Active replication and software bugs ..................................... 82 5.4.2 Enabling operators to output multiple events ........................ 87 5.5 Evaluation .................................... 87 5.5.1 Passive replication ............................ 88 5.5.2 Active replication ............................. 88 5.6 Summary ..................................... 93 6 Related work 95 6.1 Event stream processing engines ......................... 95 6.2 Parallelization and optimistic computing ................................ 97 6.2.1 Speculation ................................ 97 6.2.2 Optimistic parallelization ......................... 98 6.2.3 Parallelization in event processing .................................... 99 6.2.4 Speculation in event processing ..................... 99 6.3 Fault tolerance .................................. 100 6.3.1 Passive replication and rollback recovery ............................... 100 6.3.2 Active replication ............................ 101 6.3.3 Fault tolerance in event stream processing systems ............. 103 7 Conclusions 105 7.1 Summary of contributions ............................ 105 7.2 Challenges and future work ............................ 106 Appendices Publications 107 Pseudocode for the consensus protocol 10

    On I/O Performance and Cost Efficiency of Cloud Storage: A Client\u27s Perspective

    Get PDF
    Cloud storage has gained increasing popularity in the past few years. In cloud storage, data are stored in the service provider’s data centers; users access data via the network and pay the fees based on the service usage. For such a new storage model, our prior wisdom and optimization schemes on conventional storage may not remain valid nor applicable to the emerging cloud storage. In this dissertation, we focus on understanding and optimizing the I/O performance and cost efficiency of cloud storage from a client’s perspective. We first conduct a comprehensive study to gain insight into the I/O performance behaviors of cloud storage from the client side. Through extensive experiments, we have obtained several critical findings and useful implications for system optimization. We then design a client cache framework, called Pacaca, to further improve end-to-end performance of cloud storage. Pacaca seamlessly integrates parallelized prefetching and cost-aware caching by utilizing the parallelism potential and object correlations of cloud storage. In addition to improving system performance, we have also made efforts to reduce the monetary cost of using cloud storage services by proposing a latency- and cost-aware client caching scheme, called GDS-LC, which can achieve two optimization goals for using cloud storage services: low access latency and low monetary cost. Our experimental results show that our proposed client-side solutions significantly outperform traditional methods. Our study contributes to inspiring the community to reconsider system optimization methods in the cloud environment, especially for the purpose of integrating cloud storage into the current storage stack as a primary storage layer

    Straggler Root-Cause and Impact Analysis for Massive-scale Virtualized Cloud Datacenters

    Get PDF
    Increased complexity and scale of virtualized distributed systems has resulted in the manifestation of emergent phenomena substantially affecting overall system performance. This phenomena is known as “Long Tail”, whereby a small proportion of task stragglers significantly impede job completion time. While work focuses on straggler detection and mitigation, there is limited work that empirically studies straggler root-cause and quantifies its impact upon system operation. Such analysis is critical to ascertain in-depth knowledge of straggler occurrence for focusing developmental and research efforts towards solving the Long Tail challenge. This paper provides an empirical analysis of straggler root-cause within virtualized Cloud datacenters; we analyze two large-scale production systems to quantify the frequency and impact stragglers impose, and propose a method for conducting root-cause analysis. Results demonstrate approximately 5% of task stragglers impact 50% of total jobs for batch processes, and 53% of stragglers occur due to high server resource utilization. We leverage these findings to propose a method for extreme straggler detection through a combination of offline execution patterns modeling and online analytic agents to monitor tasks at runtime. Experiments show the approach is capable of detecting stragglers less than 11% into their execution lifecycle with 95% accuracy for short duration jobs

    Analysis and Approximation of Optimal Co-Scheduling on CMP

    Get PDF
    In recent years, the increasing design complexity and the problems of power and heat dissipation have caused a shift in processor technology to favor Chip Multiprocessors. In Chip Multiprocessors (CMP) architecture, it is common that multiple cores share some on-chip cache. The sharing may cause cache thrashing and contention among co-running jobs. Job co-scheduling is an approach to tackling the problem by assigning jobs to cores appropriately so that the contention and consequent performance degradations are minimized. This dissertation aims to tackle two of the most prominent challenges in job co-scheduling.;The first challenge is in the computational complexity for determining optimal job co-schedules. This dissertation presents one of the first systematic analyses on the complexity of job co-scheduling. Besides proving the NP completeness of job co-scheduling, it introduces a set of algorithms, based on graph theory and Integer/Linear Programming, for computing optimal co-schedules or their lower bounds in scenarios with or without job migrations. For complex cases, it empirically demonstrates the feasibility for approximating the optimal schedules effectively by proposing several heuristics-based algorithms. These discoveries facilitate the assessment of job co-schedulers by providing necessary baselines, and shed insights to the development of practical co-scheduling systems.;The second challenge resides in the prediction of the performance of processes co-running on a shared cache. This dissertation explores the influence on co-run performance prediction imposed by co-runners, program inputs, and cache configurations. Through a sequence of formal analysis, we derive an analytical co-run locality model, uncovering the inherent statistical connections between the data references of programs single-runs and their co-run locality. The model offers theoretical insights on co-run locality analysis and leads to a lightweight approach for fast prediction of shared cache performance. We demonstrate the effectiveness of the model in enabling proactive job co-scheduling.;Together, the two-dimensional findings open up many new opportunities for cache management on modern CMP by laying the foundation for job co-scheduling, and enhancing the understanding to data locality and cache sharing significantly

    Efficient runtime systems for speculative parallelization

    Get PDF
    Manuelle Parallelisierung ist zeitaufwĂ€ndig und fehleranfĂ€llig. Automatische Parallelisierung andererseits findet hĂ€ufig nur einen Bruchteil der verfĂŒgbaren ParallelitĂ€t. Mithilfe von Spekulation kann jedoch auch fĂŒr komplexere Programme ein Großteil der ParallelitĂ€t ausgenutzt werden. Spekulativ parallelisierte Programme benötigen zur AusfĂŒhrung immer ein Laufzeitsystem, um die spekulativen Annahmen abzusichern und fĂŒr den Fall des Nichtzutreffens die korrekte AusfĂŒhrungssemantik sicherzustellen. Solche Laufzeitsysteme sollen die AusfĂŒhrungszeit des parallelen Programms so wenig wie möglich beeinflussen. In dieser Arbeit untersuchen wir, inwiefern aktuelle Systeme, die Speicherzugriffe explizit und in Software beobachten, diese Anforderung erfĂŒllen, und stellen Änderungen vor, die die Laufzeit massiv verbessern. Außerdem entwerfen wir zwei neue Systeme, die mithilfe von virtueller Speicherverwaltung das Programm indirekt beobachten und dadurch eine deutlich geringere Auswirkung auf die Laufzeit haben. Eines der vorgestellten Systeme ist mittels eines Moduls direkt in den Linux-Betriebssystemkern integriert und bietet so die bestmögliche Effizienz. DarĂŒber hinaus bietet es weitreichendere Sicherheitsgarantien als alle bisherigen Techniken, indem sogar Systemaufrufe zum Beispiel zur Datei Ein- und Ausgabe in der spekulativen Isolation mit eingeschlossen sind. Wir zeigen an einer Reihe von Benchmarks die Überlegenheit unserer Spekulationssyteme ĂŒber den derzeitigen Stand der Technik. SĂ€mtliche unserer Erweiterungen und Neuentwicklungen stehen als open source zur freien VerfĂŒgung. Diese Arbeit ist in englischer Sprache verfasst.Manual parallelization is time consuming and error-prone. Automatic parallelization on the other hand is often unable to extract substantial parallelism. Using speculation, however, most of the parallelism can be exploited even of complex programs. Speculatively parallelized programs always need a runtime system during execution in order to ensure the validity of the speculative assumptions, and to ensure the correct semantics even in the case of misspeculation. These runtime systems should influence the execution time of the parallel program as little as possible. In this thesis, we investigate to which extend state-of-the-art systems which track memory accesses explicitly in software fulfill this requirement. We describe and implement changes which improve their performance substantially. We also design two new systems utilizing virtual memory abstraction to track memory changed implicitly, thus causing less overhead during execution. One of the new systems is integrated into the Linux kernel as a kernel module, providing the best possible performance. Furthermore it provides stronger soundness guarantees than any state-of-the-art system by also capturing system calls, hence including for example file I/O into speculative isolation. In a number of benchmarks we show the performance improvements of our virtual memory based systems over the state of the art. All our extensions and newly developed speculation systems are made available as open source

    Accelerated Molecular Dynamics for the Exascale

    Get PDF
    A range of specialized Molecular Dynamics (MD) methods have been developed in order to overcome the challenge of reaching longer timescales in systems that evolve through sequences of rare events. In this talk, we consider Parallel Trajectory Splicing (ParSplice) which works by generating large number of MD trajectory segments in parallel in such a way that they can later be assembled into a single statistically correct state-to-state trajectory, enabling parallel speedups up to N, the number of parallel workers. The prospect of strong-scaling MD is extremely enticing given the continuously increasing scale of available computational resources: on current peta-scale platforms N can be in the hundreds of thousands, which opens the door to MD-accurate millisecond-long atomistic simulations; extending such a capability into the exascale era could be transformative.In practice, however, the ability for ParSplice to scale increasingly relies on predicting where the trajectory will be found in the future. With this insight in mind, we develop a maximum likelihood transition model that is updated on the fly and make use of an uncertainty-driven estimator to approximate the optimal distribution of trajectory segments to be generated next. In addition, we investigate resource optimization schemes designed to fully utilize computational resources in order to generate the maximum expected throughput
    • 

    corecore