1,228 research outputs found

    Modified Nonlinear Integral Sliding Mode Control for Satellite Attitude Stabilization Using Magnetically Suspended Gimbaled Momentum Wheel

    Get PDF
    This paper treats the attitude stabilization problem for satellite using only one MSGMW (Magnetically Suspended Gimbaled Momentum Wheel). To start, the coupled dynamic model of satellite and MSGMW is defined and simplified based on the fact that the attitude errors are small during the mission mode that the MSGMW services. In order to improve the dynamic performance, reduce the steady state error and avoid the chattering phenomenon, a modified integral chattering-free sliding mode controller with a nonlinear integral function and a saturation function is introduced. Lyapunov theory is employed to prove the convergence characteristic outside the boundary layer and the terminal convergence characteristic inside the boundary layer. A numerical simulation example is employed to show the effectiveness and suitability of the proposed controller

    Indirect neural-enhanced integral sliding mode control for finite-time fault-tolerant attitude tracking of spacecraft

    Get PDF
    In this article, a neural integral sliding mode control strategy is presented for the finite-time fault-tolerant attitude tracking of rigid spacecraft subject to unknown inertia and disturbances. First, an integral sliding mode controller was developed by originally constructing a novel integral sliding mode surface to avoid the singularity problem. Then, the neural network (NN) was embedded into the integral sliding mode controller to compensate the lumped uncertainty and replace the robust switching term. In this way, the chattering phenomenon was significantly suppressed. Particularly, the mechanism of indirect neural approximation was introduced through inequality relaxation. Benefiting from this design, only a single learning parameter was required to be adjusted online, and the computation burden of the proposed controller was extremely reduced. The stability argument showed that the proposed controller could guarantee that the attitude and angular velocity tracking errors were regulated to the minor residual sets around zero in a finite time. It was noteworthy that the proposed controller was not only strongly robust against unknown inertia and disturbances, but also highly insensitive to actuator faults. Finally, the effectiveness and advantages of the proposed control strategy were validated using simulations and comparisons

    Neural Network-Based Adaptive Control for Spacecraft Under Actuator Failures and Input Saturations

    Get PDF
    In this article, we develop attitude tracking control methods for spacecraft as rigid bodies against model uncertainties, external disturbances, subsystem faults/failures, and limited resources. A new intelligent control algorithm is proposed using approximations based on radial basis function neural networks (RBFNNs) and adopting the tunable parameter-based variable structure (TPVS) control techniques. By choosing different adaptation parameters elaborately, a series of control strategies are constructed to handle the challenging effects due to actuator faults/failures and input saturations. With the help of the Lyapunov theory, we show that our proposed methods guarantee both finite-time convergence and fault-tolerance capability of the closed-loop systems. Finally, benefits of the proposed control methods are illustrated through five numerical examples

    Geometric Surface-Based Tracking Control of a Quadrotor UAV

    Full text link
    New quadrotor UAV control algorithms are developed, based on nonlinear surfaces composed of tracking errors that evolve directly on the nonlinear configuration manifold, thus inherently including in the control design the nonlinear characteristics of the SE(3) configuration space. In particular, geometric surface-based controllers are developed and are shown, through rigorous stability proofs, to have desirable almost global closed loop properties. For the first time in regards to the geometric literature, a region of attraction independent of the position error is identified and its effects are analyzed. The effectiveness of the proposed "surface based" controllers are illustrated by simulations of aggressive maneuvers in the presence of disturbances and motor saturation.Comment: 2018 26th Mediterranean Conference on Control and Automation (MED

    Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults

    Get PDF
    summary:An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently, a fault observer which can accurately estimate the gain faults is designed, and the estimated results are fed back to the adaptive sliding mode fault-tolerant controller. It is proved that the proposed control algorithm can guarantee the global asymptotic stability of the closed-loop system through the Lyapunov theorem. The simulation results authenticate the effectiveness and feasibility of the control strategy and observation scheme

    ETC-based control of underactuated AUVs and AUV formations in a 2D plane

    Get PDF
    This master thesis is aimed at single auv (autonomous underwater vehicle) and auv formation control in two-dimensional horizontal plane. For sake of increasing services life and saving communication resources, event-triggered mechanism is taken into consideration. two coordinate systems are introduced: earth-fixed frame and body-fixed frame. Some motion parameters and force analysis are used in the process of establishing mathematical model. then the related theorems, lemmas and control method commonly used in analyzing control systems are introduced. then, the auv control system is divided into two subsystems with cascade relationship. considering each subsystem separately, a controller is designed that can simultaneously carry out trajectory tracking and point stabilization. considering the service life of actuator equipment, an event-triggered controller was designed, which can reduce the frequency of actuator adjustment, prolong the service life of equipment. finally, combining the idea of light-of-sight method and virtual structure method, the auv formation tracking control problem is solved similarly to single auv. in deep sea conditions, an event- triggered communicating mechanism is designed to reduce the frequency of communication and adapt to limited communication resources, which balances the reliability and economy. matlab simulink is used to simulate the controller designed in the thesis, and confirms the feasibility of the controller

    Mathematical control of complex systems 2013

    Get PDF
    Mathematical control of complex systems have already become an ideal research area for control engineers, mathematicians, computer scientists, and biologists to understand, manage, analyze, and interpret functional information/dynamical behaviours from real-world complex dynamical systems, such as communication systems, process control, environmental systems, intelligent manufacturing systems, transportation systems, and structural systems. This special issue aims to bring together the latest/innovative knowledge and advances in mathematics for handling complex systems. Topics include, but are not limited to the following: control systems theory (behavioural systems, networked control systems, delay systems, distributed systems, infinite-dimensional systems, and positive systems); networked control (channel capacity constraints, control over communication networks, distributed filtering and control, information theory and control, and sensor networks); and stochastic systems (nonlinear filtering, nonparametric methods, particle filtering, partial identification, stochastic control, stochastic realization, system identification)

    Multi-objective integrated robust H∞ control for attitude tracking of a flexible spacecraft

    Get PDF
    This paper investigates the multi-objective attitude tracking problem of a flexible spacecraft in the presence of disturbances, parameter uncertainties and imprecise collocation of sensors and actuators. An integrated robust H∞ controller, including an output feedback component and a feedforward component, is proposed, and its gains are calculated by solving Linear Matrix Inequalities. The output feedback component stabilizes the integrated control system while the feedforward component can drive the attitude motion to track the desired angles. The system robustness against disturbances, parameter uncertainties and imprecise collocation is addressed by the H∞ approach and convex optimization. Numerical simulations are finally provided to assess the performance of the proposed controller

    Spacecraft nonlinear attitude control with bounded control input

    Get PDF
    The research in this thesis deals with nonlinear control of spacecraft attitude stabilization and tracking manoeuvres and addresses the issue of control toque saturation on a priori basis. The cascaded structure of spacecraft attitude kinematics and dynamics makes the method of integrator backstepping preferred scheme for the spacecraft nonlinear attitude control. However, the conventional backstepping control design method may result in excessive control torque beyond the saturation bound of the actuators. While remaining within the framework of conventional backstepping control design, the present work proposes the formulation of analytical bounds for the control torque components as functions of the initial attitude and angular velocity errors and the gains involved in the control design procedure. The said analytical bounds have been shown to be useful for tuning the gains in a way that the guaranteed maximum torque upper bound lies within the capability of the actuator and, hence, addressing the issue of control input saturation. Conditions have also been developed as well as the generalization of the said analytical bounds which allow for the tuning of the control gains to guarantee prescribed stability with the additional aim that the control action avoids reaching saturation while anticipating the presence of bounded external disturbance torque and uncertainties in the spacecraft moments of inertia. Moreover, the work has also been extended blending it with the artificial potential function method for achieving autonomous capability of avoiding pointing constraints for the case of spacecraft large angle slew manoeuvres. The idea of undergoing such manoeuvres using control moment gyros to track commanded angular momentum rather than a torque command has also been studied. In this context, a gimbal position command generation algorithm has been proposed for a pyramid-type cluster of four single gimbal control moment gyros. The proposed algorithm not only avoids the saturation of the angular momentum input from the control moment gyro cluster but also exploits its maximum value deliverable by the cluster along the direction of the commanded angular momentum for the major part of the manoeuvre. In this way, it results in rapid spacecraft slew manoeuvres. The ideas proposed in the thesis have also been validated using numerical simulations and compared with results already existing in the literature
    corecore