36,721 research outputs found

    Skin Colour Detection Based On An Adaptive Multi-Thresholding Technique

    Get PDF
    Today, human region detection in complex scenes has received a great attention due to the wide use of websites and the considerable progress of the still and video images processing tasks. Skin detection or segmentation is a very popular and useful technique for detecting and tracking of human body parts, especially faces and hands. It is employed in tasks like face or hand detection and tracking, filtering of objectionable web images, people retrieval in databases and the Internet. This thesis aims to build a skin detection system that will discriminate between the skin and non-skin pixels in still coloured images. This is done by introducing a metric, which measures the distances of the pixel colour to skin tone. The need for a compact skin model representation stimulates the development of parametric skin distribution models which is used in this research.An adaptive skin colour detection model has been proposed in this thesis. The model is based on the bivariate normal distribution of the skin chromatic subspace. The model uses the 2D Single Gaussian model (SGM), and the 2D Gaussian mixture model (GMM) to represent the skin colour distribution. The model also based on the image segmentation using an automatic and adaptive multi-thresholding technique. This thesis shows that the Gaussian mixture model alone or the Gaussian single model does not improve the performance of the skin detection model due to the number of false detections for high correct classification. For this reason, a combination of SGM and GMM in the same model is proposed in this research. The results show that when processing images of different people taken in different imaging conditions, the use of only one single threshold value is not adapted, and since the proposed method is capable of adaptively adjusting its threshold values and effectively separating skin colour regions from non skin ones, it is applicable to images with various conditions. The experiment shows that the suggested algorithm achieves a noticeable performance improvement and offers a robust solution for skin detection under varying illumination. The results show that the average of the correct rate “True Positive” rate for the test images is equal to 94.064% while the False Positive average is equal to 13.166%

    Fair comparison of skin detection approaches on publicly available datasets

    Full text link
    Skin detection is the process of discriminating skin and non-skin regions in a digital image and it is widely used in several applications ranging from hand gesture analysis to track body parts and face detection. Skin detection is a challenging problem which has drawn extensive attention from the research community, nevertheless a fair comparison among approaches is very difficult due to the lack of a common benchmark and a unified testing protocol. In this work, we investigate the most recent researches in this field and we propose a fair comparison among approaches using several different datasets. The major contributions of this work are an exhaustive literature review of skin color detection approaches, a framework to evaluate and combine different skin detector approaches, whose source code is made freely available for future research, and an extensive experimental comparison among several recent methods which have also been used to define an ensemble that works well in many different problems. Experiments are carried out in 10 different datasets including more than 10000 labelled images: experimental results confirm that the best method here proposed obtains a very good performance with respect to other stand-alone approaches, without requiring ad hoc parameter tuning. A MATLAB version of the framework for testing and of the methods proposed in this paper will be freely available from https://github.com/LorisNann

    Automatic skin segmentation for gesture recognition combining region and support vector machine active learning

    Get PDF
    Skin segmentation is the cornerstone of many applications such as gesture recognition, face detection, and objectionable image filtering. In this paper, we attempt to address the skin segmentation problem for gesture recognition. Initially, given a gesture video sequence, a generic skin model is applied to the first couple of frames to automatically collect the training data. Then, an SVM classifier based on active learning is used to identify the skin pixels. Finally, the results are improved by incorporating region segmentation. The proposed algorithm is fully automatic and adaptive to different signers. We have tested our approach on the ECHO database. Comparing with other existing algorithms, our method could achieve better performance

    Affective games:a multimodal classification system

    Get PDF
    Affective gaming is a relatively new field of research that exploits human emotions to influence gameplay for an enhanced player experience. Changes in player’s psychology reflect on their behaviour and physiology, hence recognition of such variation is a core element in affective games. Complementary sources of affect offer more reliable recognition, especially in contexts where one modality is partial or unavailable. As a multimodal recognition system, affect-aware games are subject to the practical difficulties met by traditional trained classifiers. In addition, inherited game-related challenges in terms of data collection and performance arise while attempting to sustain an acceptable level of immersion. Most existing scenarios employ sensors that offer limited freedom of movement resulting in less realistic experiences. Recent advances now offer technology that allows players to communicate more freely and naturally with the game, and furthermore, control it without the use of input devices. However, the affective game industry is still in its infancy and definitely needs to catch up with the current life-like level of adaptation provided by graphics and animation

    Identifying person re-occurrences for personal photo management applications

    Get PDF
    Automatic identification of "who" is present in individual digital images within a photo management system using only content-based analysis is an extremely difficult problem. The authors present a system which enables identification of person reoccurrences within a personal photo management application by combining image content-based analysis tools with context data from image capture. This combined system employs automatic face detection and body-patch matching techniques, which collectively facilitate identifying person re-occurrences within images grouped into events based on context data. The authors introduce a face detection approach combining a histogram-based skin detection model and a modified BDF face detection method to detect multiple frontal faces in colour images. Corresponding body patches are then automatically segmented relative to the size, location and orientation of the detected faces in the image. The authors investigate the suitability of using different colour descriptors, including MPEG-7 colour descriptors, color coherent vectors (CCV) and color correlograms for effective body-patch matching. The system has been successfully integrated into the MediAssist platform, a prototype Web-based system for personal photo management, and runs on over 13000 personal photos

    A Novel Scheme for Intelligent Recognition of Pornographic Images

    Full text link
    Harmful contents are rising in internet day by day and this motivates the essence of more research in fast and reliable obscene and immoral material filtering. Pornographic image recognition is an important component in each filtering system. In this paper, a new approach for detecting pornographic images is introduced. In this approach, two new features are suggested. These two features in combination with other simple traditional features provide decent difference between porn and non-porn images. In addition, we applied fuzzy integral based information fusion to combine MLP (Multi-Layer Perceptron) and NF (Neuro-Fuzzy) outputs. To test the proposed method, performance of system was evaluated over 18354 download images from internet. The attained precision was 93% in TP and 8% in FP on training dataset, and 87% and 5.5% on test dataset. Achieved results verify the performance of proposed system versus other related works
    corecore