185 research outputs found

    Spike-based local synaptic plasticity: A survey of computational models and neuromorphic circuits

    Get PDF
    Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of powerful, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if and how they could be mapped onto neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide a comprehensive overview of representative brain-inspired synaptic plasticity models and mixed-signal CMOS neuromorphic circuits within a unified framework. We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and post-synaptic neuron information, which we propose as a fundamental requirement for physical implementations of synaptic plasticity. Based on this principle, we compare the properties of these models within the same framework, and describe the mixed-signal electronic circuits that implement their computing primitives, pointing out how these building blocks enable efficient on-chip and online learning in neuromorphic processing systems

    Hardware-Amenable Structural Learning for Spike-based Pattern Classification using a Simple Model of Active Dendrites

    Full text link
    This paper presents a spike-based model which employs neurons with functionally distinct dendritic compartments for classifying high dimensional binary patterns. The synaptic inputs arriving on each dendritic subunit are nonlinearly processed before being linearly integrated at the soma, giving the neuron a capacity to perform a large number of input-output mappings. The model utilizes sparse synaptic connectivity; where each synapse takes a binary value. The optimal connection pattern of a neuron is learned by using a simple hardware-friendly, margin enhancing learning algorithm inspired by the mechanism of structural plasticity in biological neurons. The learning algorithm groups correlated synaptic inputs on the same dendritic branch. Since the learning results in modified connection patterns, it can be incorporated into current event-based neuromorphic systems with little overhead. This work also presents a branch-specific spike-based version of this structural plasticity rule. The proposed model is evaluated on benchmark binary classification problems and its performance is compared against that achieved using Support Vector Machine (SVM) and Extreme Learning Machine (ELM) techniques. Our proposed method attains comparable performance while utilizing 10 to 50% less computational resources than the other reported techniques.Comment: Accepted for publication in Neural Computatio

    On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex

    Get PDF
    In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on a behavioral macro-model for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forward but also backward. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim of this paper is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three-terminal memristive type devices. All files used for the simulations are made available through the journal web site1

    An Investigation into Neuromorphic ICs using Memristor-CMOS Hybrid Circuits

    Full text link
    The memristance of a memristor depends on the amount of charge flowing through it and when current stops flowing through it, it remembers the state. Thus, memristors are extremely suited for implementation of memory units. Memristors find great application in neuromorphic circuits as it is possible to couple memory and processing, compared to traditional Von-Neumann digital architectures where memory and processing are separate. Neural networks have a layered structure where information passes from one layer to another and each of these layers have the possibility of a high degree of parallelism. CMOS-Memristor based neural network accelerators provide a method of speeding up neural networks by making use of this parallelism and analog computation. In this project we have conducted an initial investigation into the current state of the art implementation of memristor based programming circuits. Various memristor programming circuits and basic neuromorphic circuits have been simulated. The next phase of our project revolved around designing basic building blocks which can be used to design neural networks. A memristor bridge based synaptic weighting block, a operational transconductor based summing block were initially designed. We then designed activation function blocks which are used to introduce controlled non-linearity. Blocks for a basic rectified linear unit and a novel implementation for tan-hyperbolic function have been proposed. An artificial neural network has been designed using these blocks to validate and test their performance. We have also used these fundamental blocks to design basic layers of Convolutional Neural Networks. Convolutional Neural Networks are heavily used in image processing applications. The core convolutional block has been designed and it has been used as an image processing kernel to test its performance.Comment: Bachelor's thesi
    corecore