141 research outputs found

    High-Order Adaptive Synchrosqueezing Transform

    Get PDF
    The prevalence of the separation of multicomponent non-stationary signals across many elds of research makes this concept an important subject of study. The synchrosqueezing transform (SST) is a particular type of reassignment method. It aims to separate and recover the components of a multicomponent non-stationary signal. The short time Fourier transform (STFT)-based SST (FSST) and the continuous wavelet transform (CWT)based SST (WSST) have been used in engineering and medical data analysis applications. The current study introduces the dierent versions of FSST and WSST to estimate instantaneous frequency (IF) and to recover components. It has a good concentration and reconstruction for a wide variety of amplitude and frequency modulated multicomponent signals. Earlier studies have improved existing FSSTs by computing more accurate estimates of the IFs of the modes making up the signal. The higher order approximations for both the amplitude and phase were used. Therefore, there is a better concentration and reconstruction for a wider variety of AM-FM modes than what was possible with current synchrosqueezing techniques. In this study, we propose to improve the adaptive FSST, the adaptive WSST, and to introduce a new type of 2nd-order FSST with a new phase transformation. We use higher order approximations for both the amplitude and phase function. We study the higher order adaptive FSST and adaptive WSST. The result shows an even better concentration and reconstruction for a wider variety of AM-FM modes with the higher order adaptive SSTs. We also study the theoretical analysis of the 2nd-order FSST with a new phase transformation. The new phase transformation introduced by us is much simpler than the convectional one, while the performance in IF estimation and component recovery of the new 2nd-order FSST is comparable with, and even better in some cases than, that of the conventional 2nd-order FSST

    The Synchrosqueezing transform for instantaneous spectral analysis

    Full text link
    The Synchrosqueezing transform is a time-frequency analysis method that can decompose complex signals into time-varying oscillatory components. It is a form of time-frequency reassignment that is both sparse and invertible, allowing for the recovery of the signal. This article presents an overview of the theory and stability properties of Synchrosqueezing, as well as applications of the technique to topics in cardiology, climate science and economics

    Instantaneous Frequency Estimation and Signal Separation Using Fractional Continuous Wavelet Transform

    Get PDF
    In the signal processing field, time-frequency representations (TFR\u27s) have intensively been improved to provide effective and powerful tools for reliable signal analysis. One of the most valuable and frequently used tools is Fourier transform (FT) which has been used to study the frequency content of stationary signals in the Fourier domain (FD). However, FT is not sufficient to study the frequency of non-stationary signals. For this particular type of signals to be best analyzed, some transforms such as the short time Fourier transform (STFT) and the continuous wavelet transform (CWT) have been introduced to provide us with a signal representation in the time-frequency plane. Another transform based on STFT and CWT; namely, the synchrosqueezing transform (SST), was introduced to improve the sharpness of the TFR\u27s by assigning the coefficient value to a different point in the TF plane. Also, TFR\u27s with satisfactory energy concentration and the corresponding SST’s involving both time and frequency variables were introduced; namely, the instantaneous frequency-embedded STFT (CWT) (IFE-STFT/IFE-CWT), where a rough estimation of the IF of a targeted component was used to achieve an accurate IF estimation. Recently, the STFT, the CWT and the corresponding SST’s with a time-varying window width are proposed and studied. These transforms have shown the confidence in the accuracy of both sharpening the TFR and separating the components of a multicomponent non-stationary signal, which then led to obtain a more accurate component retrieval formula at any local time. In order to improve the time-frequency resolutions, the concept of fractional Fourier transform (FrFT) was introduced as a potent tool to analyze time-varying signals; however, it fails in locating the frequency content in the fractional Fourier domain (FrFD). To this regard, the short time fractional FT (STFrFT) and the fractional CWT (FrCWT) were proposed to solve this issue by displaying the time and FrFD-frequency contents jointly in the time-FrFD-frequency plane. In this dissertation, we provide a component retrieval formula for a multicomponent signal from its FrCWT with integral involving only the scale variable and then introducing the corresponding SST (FrWSST). We also introduce the first and second order SST based on the IFE-CWT (IFE-WSST) and then propose time-FrFD-frequency representations with satisfactory energy concentration; namely, IFE-FrCWT and the corresponding SST (IFE-FrWSST). Lastly, we consider the FrCWT with a time-varying window width; namely, the adaptive FrCWT (AFrCWT) and the corresponding SST (AFrWSST). We propose these TFR\u27s in the FrFD for the purpose of not only improving the accuracy of the IF estimation and the energy concentration of these transforms, but also enhancing the separation conditions for the components of a multicomponent signal to be retrieved more accurately

    Synchrosqueezed Wave Packet Transforms and Diffeomorphism Based Spectral Analysis for 1D General Mode Decompositions

    Full text link
    This paper develops new theory and algorithms for 1D general mode decompositions. First, we introduce the 1D synchrosqueezed wave packet transform and prove that it is able to estimate the instantaneous information of well-separated modes from their superposition accurately. The synchrosqueezed wave packet transform has a better resolution than the synchrosqueezed wavelet transform in the time-frequency domain for separating high frequency modes. Second, we present a new approach based on diffeomorphisms for the spectral analysis of general shape functions. These two methods lead to a framework for general mode decompositions under a weak well-separation condition and a well different condition. Numerical examples of synthetic and real data are provided to demonstrate the fruitful applications of these methods.Comment: 39 page

    Direct Signal Separation Via Extraction of Local Frequencies with Adaptive Time-Varying Parameters

    Full text link
    In nature, real-world phenomena that can be formulated as signals (or in terms of time series) are often affected by a number of factors and appear as multi-component modes. The natural approach to understand and process such phenomena is to decompose, or even better, to separate the multi-component signals to their basic building blocks (called sub-signals or time-series components, or fundamental modes). Recently the synchro-squeezing transform (SST) and its variants have been developed for nonstationary signal separation. More recently, a direct method of the time-frequency approach, called signal separation operation (SSO), was introduced for multi-component signal separation. While both SST and SSO are mathematically rigorous on the instantaneous frequency (IF) estimation, SSO avoids the second step of the two-step SST method in signal separation, which depends heavily on the accuracy of the estimated IFs. In the present paper, we solve the signal separation problem by constructing an adaptive signal separation operator (ASSO) for more effective separation of the blind-source multi-component signal, via introducing a time-varying parameter that adapts to local IFs. A recovery scheme is also proposed to extract the signal components one by one, and the time-varying parameter is updated for each component. The proposed method is suitable for engineering implementation, being capable of separating complicated signals into their sub-signals and reconstructing the signal trend directly. Numerical experiments on synthetic and real-world signals are presented to demonstrate our improvement over the previous attempts
    • …
    corecore